IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v20y2000i3p265-277.html
   My bibliography  Save this article

A comparison of luminous efficacy models with illuminance and irradiance measurements

Author

Listed:
  • Vartiainen, Eero

Abstract

Several luminous efficacy models have been tested against simultaneous illuminance and irradiance measurements in Helsinki, Finland (60°11′N, 24°50′E). When compared with the measured values, the Perez luminous efficacy model had the lowest relative root mean square difference (RMSD) of 6.7%. All tested models had an RMSD within 2% of the constant model which used the measured yearly average of 110 lm/W as the constant. For all models, the error was smaller for high solar altitudes but greater for the low altitudes. The monthly average luminous efficacy was fairly constant between April and October but it was clearly lower during the winter months when the sun is very low.

Suggested Citation

  • Vartiainen, Eero, 2000. "A comparison of luminous efficacy models with illuminance and irradiance measurements," Renewable Energy, Elsevier, vol. 20(3), pages 265-277.
  • Handle: RePEc:eee:renene:v:20:y:2000:i:3:p:265-277
    DOI: 10.1016/S0960-1481(99)00115-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148199001159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(99)00115-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vartiainen, Eero, 1999. "An anisotropic shadow ring correction method for the horizontal diffuse irradiance measurements," Renewable Energy, Elsevier, vol. 17(3), pages 311-317.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, M.C. & Garg, S.N., 2010. "Illuminance estimation and daylighting energy savings for Indian regions," Renewable Energy, Elsevier, vol. 35(3), pages 703-711.
    2. Dieste-Velasco, M.I. & Díez-Mediavilla, M. & Granados-López, D. & González-Peña, D. & Alonso-Tristán, C., 2019. "Performance of global luminous efficacy models and proposal of a new model for daylighting in Burgos, Spain," Renewable Energy, Elsevier, vol. 133(C), pages 1000-1010.
    3. Beccali, M. & Finocchiaro, P. & Ippolito, M.G. & Leone, G. & Panno, D. & Zizzo, G., 2018. "Analysis of some renewable energy uses and demand side measures for hotels on small Mediterranean islands: A case study," Energy, Elsevier, vol. 157(C), pages 106-114.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dal Pai, Alexandre & Escobedo, João Francisco & Dal Pai, Enzo & de Oliveira, Amauri Pereira & Soares, Jacyra Ramos & Codato, Georgia, 2016. "MEO shadowring method for measuring diffuse solar irradiance: Corrections based on sky cover," Renewable Energy, Elsevier, vol. 99(C), pages 754-763.
    2. Haiying Cheng & Xuan Zhang & Ziqian Chen & Wenhong Sun & Kaiyan He & Hongfei Zheng & Yanxiu Tang, 2022. "Theoretical Investigations on Shadow Band Correction Factors for Diffuse Radiation under Isotropic Conditions without Approximation," Energies, MDPI, vol. 15(19), pages 1-25, September.
    3. Vartiainen, Eero, 2000. "A new approach to estimating the diffuse irradiance on inclined surfaces," Renewable Energy, Elsevier, vol. 20(1), pages 45-64.
    4. Rodríguez-Muñoz, J.M. & Monetta, A. & Alonso-Suárez, R. & Bove, I. & Abal, G., 2021. "Correction methods for shadow-band diffuse irradiance measurements: assessing the impact of local adaptation," Renewable Energy, Elsevier, vol. 178(C), pages 830-844.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:20:y:2000:i:3:p:265-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.