IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v39y2012i1p154-161.html
   My bibliography  Save this article

Energy consumption in typical Caribbean office buildings: A potential short term solution to energy concerns

Author

Listed:
  • Edwards, Erwin Elliot
  • Iyare, O.S.
  • Moseley, L.L.

Abstract

This paper examines the feasibility of energy efficiency as a short term solution to the Caribbean’s energy problems. It considers energy consumption across selected office buildings in Barbados, typical of Caribbean architecture. By comparing their energy consumption to that of the energy consumption for the building with the “best observable” consumption in the selected group, the energy efficiency is determined. Data for five (5) buildings with similar characteristics were collected, analyzed and normalized to facilitate a direct comparison between them. The selected indicator was Energy Consumption per Unit Area (IE = E/A).

Suggested Citation

  • Edwards, Erwin Elliot & Iyare, O.S. & Moseley, L.L., 2012. "Energy consumption in typical Caribbean office buildings: A potential short term solution to energy concerns," Renewable Energy, Elsevier, vol. 39(1), pages 154-161.
  • Handle: RePEc:eee:renene:v:39:y:2012:i:1:p:154-161
    DOI: 10.1016/j.renene.2011.07.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111004332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.07.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saunders Harry D, 2005. "A Calculator for Energy Consumption Changes Arising from New Technologies," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 5(1), pages 1-35, September.
    2. Beccali, Marco & La Gennusa, Maria & Lo Coco, Leonardo & Rizzo, Gianfranco, 2009. "An empirical approach for ranking environmental and energy saving measures in the hotel sector," Renewable Energy, Elsevier, vol. 34(1), pages 82-90.
    3. Brookes, Leonard, 2004. "Energy efficiency fallacies--a postscript," Energy Policy, Elsevier, vol. 32(8), pages 945-947, June.
    4. Binswanger, Mathias, 2001. "Technological progress and sustainable development: what about the rebound effect?," Ecological Economics, Elsevier, vol. 36(1), pages 119-132, January.
    5. Karligash Kenjegalieva & Richard Simper & Thomas Weyman-Jones, 2009. "Efficiency of transition banks: inter-country banking industry trends," Applied Financial Economics, Taylor & Francis Journals, vol. 19(19), pages 1531-1546.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alleyne, Dillon & Gomes, Charmaine & Martín, Ramón & Phillips, Willard, 2013. "An assessment of the economic and social impacts of climate change on the energy sector in the Caribbean," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38280, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    2. Gleydson de Oliveira Cavalcanti & Handson Claudio Dias Pimenta, 2023. "Electric Energy Management in Buildings Based on the Internet of Things: A Systematic Review," Energies, MDPI, vol. 16(15), pages 1-29, August.
    3. Fu, Xueqian & Zhang, Xiurong, 2019. "Estimation of building energy consumption using weather information derived from photovoltaic power plants," Renewable Energy, Elsevier, vol. 130(C), pages 130-138.
    4. Arias-Gaviria, Jessica & Larsen, Erik R. & Arango-Aramburo, Santiago, 2018. "Understanding the future of Seawater Air Conditioning in the Caribbean: A simulation approach," Utilities Policy, Elsevier, vol. 53(C), pages 73-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saunders, Harry D., 2014. "Toward a neoclassical theory of sustainable consumption: Eight golden age propositions," Ecological Economics, Elsevier, vol. 105(C), pages 220-232.
    2. Yang, Lisha & Li, Zhi, 2017. "Technology advance and the carbon dioxide emission in China – Empirical research based on the rebound effect," Energy Policy, Elsevier, vol. 101(C), pages 150-161.
    3. Wang, Zhaohua & Lu, Milin & Wang, Jian-Cai, 2014. "Direct rebound effect on urban residential electricity use: An empirical study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 124-132.
    4. Wang, Zhaohua & Lu, Milin, 2014. "An empirical study of direct rebound effect for road freight transport in China," Applied Energy, Elsevier, vol. 133(C), pages 274-281.
    5. Zhang, Jiangshan & Lin Lawell, C.-Y. Cynthia, 2017. "The macroeconomic rebound effect in China," Energy Economics, Elsevier, vol. 67(C), pages 202-212.
    6. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    7. Font Vivanco, David & McDowall, Will & Freire-González, Jaume & Kemp, René & van der Voet, Ester, 2016. "The foundations of the environmental rebound effect and its contribution towards a general framework," Ecological Economics, Elsevier, vol. 125(C), pages 60-69.
    8. Estrella Trincado & Antonio Sánchez-Bayón & José María Vindel, 2021. "The European Union Green Deal: Clean Energy Wellbeing Opportunities and the Risk of the Jevons Paradox," Energies, MDPI, vol. 14(14), pages 1-23, July.
    9. Font Vivanco, David & Kemp, René & van der Voet, Ester, 2016. "How to deal with the rebound effect? A policy-oriented approach," Energy Policy, Elsevier, vol. 94(C), pages 114-125.
    10. Vance, Colin & Frondel, Manuel, 2015. "From fuel taxation to efficiency standards: A wrong turn in European climate protection?," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113171, Verein für Socialpolitik / German Economic Association.
    11. Alcott, Blake, 2008. "The sufficiency strategy: Would rich-world frugality lower environmental impact," Ecological Economics, Elsevier, vol. 64(4), pages 770-786, February.
    12. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    13. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    14. Lang, Corey & Okwelum, Edson, 2015. "The mitigating effect of strategic behavior on the net benefits of a direct load control program," Energy Economics, Elsevier, vol. 49(C), pages 141-148.
    15. Tsai, Kang-Ting & Lin, Tzu-Ping & Hwang, Ruey-Lung & Huang, Yu-Jing, 2014. "Carbon dioxide emissions generated by energy consumption of hotels and homestay facilities in Taiwan," Tourism Management, Elsevier, vol. 42(C), pages 13-21.
    16. Huang, Beijia & Mauerhofer, Volker, 2016. "Low carbon technology assessment and planning—Case analysis of building sector in Chongming, Shanghai," Renewable Energy, Elsevier, vol. 86(C), pages 324-331.
    17. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    18. Shady Attia, 2020. "Spatial and Behavioral Thermal Adaptation in Net Zero Energy Buildings: An Exploratory Investigation," Sustainability, MDPI, vol. 12(19), pages 1-15, September.
    19. Freire-González, Jaume, 2017. "Evidence of direct and indirect rebound effect in households in EU-27 countries," Energy Policy, Elsevier, vol. 102(C), pages 270-276.
    20. Jiafeng Gu, 2021. "Effects of Patent Policy on Outputs and Commercialization of Academic Patents in China: A Spatial Difference-in-Differences Analysis," Sustainability, MDPI, vol. 13(23), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:39:y:2012:i:1:p:154-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.