IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v127y2018icp998-1003.html
   My bibliography  Save this article

Evaluation of landscape fabric as a solar air heater

Author

Listed:
  • Poole, Mark R.
  • Shah, Sanjay B.
  • Boyette, Michael D.
  • Grimes, Jesse L.
  • Stikeleather, Larry F.

Abstract

Solar heating has great potential to displace fossil fuels in agricultural and industrial space heating. The conventional metal transpired solar collectors (mTSC) is highly-efficient but its high cost has impeded its adoption. While the plastic TSC (pTSC) would be less-expensive than the mTSC, it requires perforation. Since a high absorptance, non-woven landscape fabric is widely available and inexpensive, it could be cost-effective solar collector. The landscape fabric collector (fTSC) was compared with mTSC (anodized aluminum) and pTSC for temperature rise (ΔT) and efficiency (η) at two suction velocities (Vs). The mTSC and pTSC had porosity of 1.2% while the fTSC had a porosity of 80%. At 0.047 m/s, the fTSC produced higher average ΔT (by at least 2 °C) and average η (by at least 10%) than the mTSC and pTSC that were similar in performance. At the higher Vs of 0.060 m/s, the fTSC slightly outperformed the mTSC while the pTSC had the lowest ΔT and η. Superior performance of the fTSC was likely due to lower energy losses than the other two collectors as was indicated by its scanning electron microscope images. Modeling the fTSC as a simplified packed bed may be appropriate and challenges have been identified. Practical scale-up suggestions are provided. The fTSC is the least expensive solar air heater for space heating.

Suggested Citation

  • Poole, Mark R. & Shah, Sanjay B. & Boyette, Michael D. & Grimes, Jesse L. & Stikeleather, Larry F., 2018. "Evaluation of landscape fabric as a solar air heater," Renewable Energy, Elsevier, vol. 127(C), pages 998-1003.
  • Handle: RePEc:eee:renene:v:127:y:2018:i:c:p:998-1003
    DOI: 10.1016/j.renene.2018.05.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118305664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.05.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benoit Sicre & Patrick Baumann, 2015. "High-efficiency ventilation and heating systems by means of solar air collectors for industry building refurbishment," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 10(2), pages 139-145.
    2. Hollick, J.C., 1994. "Unglazed solar wall air heaters," Renewable Energy, Elsevier, vol. 5(1), pages 415-421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Yu & Sanjay B. Shah & Mark T. Knauer & Michael D. Boyette & Larry F. Stikeleather, 2021. "Comprehensive Evaluation of a Landscape Fabric Based Solar Air Heater in a Pig Nursery," Energies, MDPI, vol. 14(21), pages 1-15, November.
    2. Yi Liang & Michael Janorschke & Chad E. Hayes, 2022. "Low-Cost Solar Collectors to Pre-Heat Ventilation Air in Broiler Houses," Energies, MDPI, vol. 15(4), pages 1-9, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peci López, F. & Ruiz de Adana Santiago, M., 2015. "Sensitivity study of an opaque ventilated façade in the winter season in different climate zones in Spain," Renewable Energy, Elsevier, vol. 75(C), pages 524-533.
    2. Paya-Marin, Miguel A. & Roy, Krishanu & Chen, Jian-Fei & Masood, Rehan & Lawson, R. Mark & Gupta, Bhaskar Sen & Lim, James B.P., 2020. "Large-scale experiment of a novel non-domestic building using BPSC systems for energy saving," Renewable Energy, Elsevier, vol. 152(C), pages 799-811.
    3. Gholampour, Maysam & Ameri, Mehran, 2016. "Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study," Applied Energy, Elsevier, vol. 164(C), pages 837-856.
    4. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Shen, Jingchun & Zhang, Xingxing & Yang, Tong & Tang, Llewellyn & Cheshmehzangi, Ali & Wu, Yupeng & Huang, Guiqin & Zhong, Dan & Xu, Peng & Liu, Shengchun, 2016. "Characteristic study of a novel compact Solar Thermal Facade (STF) with internally extruded pin–fin flow channel for building integration," Applied Energy, Elsevier, vol. 168(C), pages 48-64.
    6. Chan, Hoy-Yen & Riffat, Saffa B. & Zhu, Jie, 2010. "Review of passive solar heating and cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 781-789, February.
    7. Ben-Amara, Mahmoud & Houcine, Imed & Guizani, Aman-Allah & Maalej, Mohammed, 2005. "Efficiency investigation of a new-design air solar plate collector used in a humidification–dehumidification desalination process," Renewable Energy, Elsevier, vol. 30(9), pages 1309-1327.
    8. Peci, F. & Comino, F. & Ruiz de Adana, M., 2018. "Performance of an unglazed transpire collector in the facade of a building for heating and cooling in combination with a desiccant evaporative cooler," Renewable Energy, Elsevier, vol. 122(C), pages 460-471.
    9. Boutin, Yanik & Gosselin, Louis, 2009. "Optimal mixed convection for maximal energy recovery with vertical porous channel (solar wall)," Renewable Energy, Elsevier, vol. 34(12), pages 2714-2721.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:127:y:2018:i:c:p:998-1003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.