IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v127y2018icp344-354.html
   My bibliography  Save this article

A comprehensive evaluation of factors affecting the levelized cost of wave energy conversion projects

Author

Listed:
  • Chang, Grace
  • Jones, Craig A.
  • Roberts, Jesse D.
  • Neary, Vincent S.

Abstract

The primary objectives of this study are to evaluate the levelized cost of energy (LCOE) for different wave energy conversion strategies and to examine cost reduction pathways such that wave energy conversion projects are competitive, relative to alternative energy industries. The energy production of six different WEC devices was estimated for four sites along the U.S. Pacific coast. The LCOE of pilot-scale wave energy conversion projects was estimated to range between $0.07/kWh and $0.92/kWh higher than the target LCOE of those for early-market offshore wind energy projects. Device capacity factors were generally below the commonly assumed value of 30%. Methods of cost reduction to the target LCOE of $0.30/kWh were explored, including decreasing capital and operational expenditures (CAPEX and OPEX) and increasing annual energy production (AEP) through improvements in the wave energy resource and WEC and WEC array performance, and advanced controls. Results indicate that CAPEX and OPEX should be reduced by at least 45% and AEP should be increased by 200%. A reduction of CAPEX and OPEX by 75%, combined with array evaluation and control strategies capable of increasing AEP by 12%–55% could also result in LCOE for wave energy conversion projects of less than $0.30/kWh.

Suggested Citation

  • Chang, Grace & Jones, Craig A. & Roberts, Jesse D. & Neary, Vincent S., 2018. "A comprehensive evaluation of factors affecting the levelized cost of wave energy conversion projects," Renewable Energy, Elsevier, vol. 127(C), pages 344-354.
  • Handle: RePEc:eee:renene:v:127:y:2018:i:c:p:344-354
    DOI: 10.1016/j.renene.2018.04.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118304798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.04.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Guang & Weiss, George & Mueller, Markus & Townley, Stuart & Belmont, Mike R., 2012. "Wave energy converter control by wave prediction and dynamic programming," Renewable Energy, Elsevier, vol. 48(C), pages 392-403.
    2. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    3. van Nieuwkoop, Joana C.C. & Smith, Helen C.M. & Smith, George H. & Johanning, Lars, 2013. "Wave resource assessment along the Cornish coast (UK) from a 23-year hindcast dataset validated against buoy measurements," Renewable Energy, Elsevier, vol. 58(C), pages 1-14.
    4. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    5. Chang, G. & Ruehl, K. & Jones, C.A. & Roberts, J. & Chartrand, C., 2016. "Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions," Renewable Energy, Elsevier, vol. 89(C), pages 636-648.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    2. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    3. Craig Jones & Grace Chang & Kaustubha Raghukumar & Samuel McWilliams & Ann Dallman & Jesse Roberts, 2018. "Spatial Environmental Assessment Tool (SEAT): A Modeling Tool to Evaluate Potential Environmental Risks Associated with Wave Energy Converter Deployments," Energies, MDPI, vol. 11(8), pages 1-19, August.
    4. Penalba, Markel & Ulazia, Alain & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2018. "Wave energy resource variation off the west coast of Ireland and its impact on realistic wave energy converters’ power absorption," Applied Energy, Elsevier, vol. 224(C), pages 205-219.
    5. Ulazia, Alain & Penalba, Markel & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2019. "Reduction of the capture width of wave energy converters due to long-term seasonal wave energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    7. Garcia-Teruel, Anna & DuPont, Bryony & Forehand, David I.M., 2021. "Hull geometry optimisation of wave energy converters: On the choice of the objective functions and the optimisation formulation," Applied Energy, Elsevier, vol. 298(C).
    8. Ashton, I. & Van-Nieuwkoop-McCall, J.C.C. & Smith, H.C.M. & Johanning, L., 2014. "Spatial variability of waves within a marine energy site using in-situ measurements and a high resolution spectral wave model," Energy, Elsevier, vol. 66(C), pages 699-710.
    9. Fairley, I. & Smith, H.C.M. & Robertson, B. & Abusara, M. & Masters, I., 2017. "Spatio-temporal variation in wave power and implications for electricity supply," Renewable Energy, Elsevier, vol. 114(PA), pages 154-165.
    10. Garcia-Teruel, A. & Forehand, D.I.M., 2021. "A review of geometry optimisation of wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Fairley, Iain & Lewis, Matthew & Robertson, Bryson & Hemer, Mark & Masters, Ian & Horrillo-Caraballo, Jose & Karunarathna, Harshinie & Reeve, Dominic E., 2020. "A classification system for global wave energy resources based on multivariate clustering," Applied Energy, Elsevier, vol. 262(C).
    12. Yetkin, Mertcan & Kalidoss, Sudharsan & Curtis, Frank E. & Snyder, Lawrence V. & Banerjee, Arindam, 2021. "Practical optimal control of a wave-energy converter in regular wave environments," Renewable Energy, Elsevier, vol. 171(C), pages 1382-1394.
    13. Robertson, Bryson & Bailey, Helen & Clancy, Dan & Ortiz, Juan & Buckham, Bradley, 2016. "Influence of wave resource assessment methodology on wave energy production estimates," Renewable Energy, Elsevier, vol. 86(C), pages 1145-1160.
    14. Robertson, Bryson & Bailey, Helen & Buckham, Bradley, 2019. "Resource assessment parameterization impact on wave energy converter power production and mooring loads," Applied Energy, Elsevier, vol. 244(C), pages 1-15.
    15. Choupin, Ophelie & Henriksen, Michael & Tomlinson, Rodger, 2022. "Interrelationship between variables for wave direction-dependent WEC/site-configuration pairs using the CapEx method," Energy, Elsevier, vol. 248(C).
    16. Wu, Jinming & Qin, Liuzhen & Chen, Ni & Qian, Chen & Zheng, Siming, 2022. "Investigation on a spring-integrated mechanical power take-off system for wave energy conversion purpose," Energy, Elsevier, vol. 245(C).
    17. Ophelie Choupin & Michael Henriksen & Amir Etemad-Shahidi & Rodger Tomlinson, 2021. "Breaking-Down and Parameterising Wave Energy Converter Costs Using the CapEx and Similitude Methods," Energies, MDPI, vol. 14(4), pages 1-27, February.
    18. Aristodemo, Francesco & Algieri Ferraro, Danilo, 2018. "Feasibility of WEC installations for domestic and public electrical supplies: A case study off the Calabrian coast," Renewable Energy, Elsevier, vol. 121(C), pages 261-285.
    19. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    20. Zhigang Liu & Jin Wang & Tao Tao & Ziyun Zhang & Siyi Chen & Yang Yi & Shuang Han & Yongqian Liu, 2023. "Wave Power Prediction Based on Seasonal and Trend Decomposition Using Locally Weighted Scatterplot Smoothing and Dual-Channel Seq2Seq Model," Energies, MDPI, vol. 16(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:127:y:2018:i:c:p:344-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.