IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v125y2018icp121-132.html
   My bibliography  Save this article

A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations

Author

Listed:
  • Zhang, Yi
  • Xu, Yujie
  • Guo, Huan
  • Zhang, Xinjing
  • Guo, Cong
  • Chen, Haisheng

Abstract

A novel method based on hybrid energy storage system (HESS), composed of adiabatic compressed air energy storage (A-CAES) and flywheel energy storage system (FESS), to mitigate wind power fluctuations and augment wind power penetration is proposed in this paper. Wind power fluctuates in different frequencies, mainly divided into low and high frequency, which can be coped with by A-CAES and FESS respectively. To fit with low frequency fluctuation exhibiting large magnitude, A-CAES with multi-operating strategies is first proposed to widen operational ranges. Mathematical model of key components' off-design performance is established. For a 49.5 MW wind farm in China, design and optimization of HESS are comprehensively investigated. More specifically, the selection of A-CAES system's key components, such as compressor and expander, and parameters of them are specified as well as the parameters of FESS. The key operating parameters of the HESS, when integrated with wind plant, are analyzed and the characteristics are revealed. The results indicate that by HESS, wind power with fluctuation within 0–49.5 MW (average 25.55 MW) can be stabilized to a steady electrical power output of 24.18 MW. The loss of wind power is 6.6%, far less than the wind power rejection rate 17.1% in China.

Suggested Citation

  • Zhang, Yi & Xu, Yujie & Guo, Huan & Zhang, Xinjing & Guo, Cong & Chen, Haisheng, 2018. "A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations," Renewable Energy, Elsevier, vol. 125(C), pages 121-132.
  • Handle: RePEc:eee:renene:v:125:y:2018:i:c:p:121-132
    DOI: 10.1016/j.renene.2018.02.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118302027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.02.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Succar, Samir & Denkenberger, David C. & Williams, Robert H., 2012. "Optimization of specific rating for wind turbine arrays coupled to compressed air energy storage," Applied Energy, Elsevier, vol. 96(C), pages 222-234.
    2. Deepak, M. & Abraham, Rajesh Joseph & Gonzalez-Longatt, Francisco M. & Greenwood, David M. & Rajamani, Haile-Selassie, 2017. "A novel approach to frequency support in a wind integrated power system," Renewable Energy, Elsevier, vol. 108(C), pages 194-206.
    3. Yu, Hongwei & Duan, Jinhui & Du, Wei & Xue, Song & Sun, Jinghui, 2017. "China's energy storage industry: Develop status, existing problems and countermeasures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 767-784.
    4. Saadat, Mohsen & Shirazi, Farzad A. & Li, Perry Y., 2015. "Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind turbines," Applied Energy, Elsevier, vol. 137(C), pages 603-616.
    5. Haglind, F. & Elmegaard, B., 2009. "Methodologies for predicting the part-load performance of aero-derivative gas turbines," Energy, Elsevier, vol. 34(10), pages 1484-1492.
    6. Zhao, Pan & Wang, Jiangfeng & Dai, Yiping, 2015. "Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level," Renewable Energy, Elsevier, vol. 75(C), pages 541-549.
    7. Van de Ven, James D. & Li, Perry Y., 2009. "Liquid piston gas compression," Applied Energy, Elsevier, vol. 86(10), pages 2183-2191, October.
    8. Zhang, Yuan & Yang, Ke & Li, Xuemei & Xu, Jianzhong, 2013. "The thermodynamic effect of air storage chamber model on Advanced Adiabatic Compressed Air Energy Storage System," Renewable Energy, Elsevier, vol. 57(C), pages 469-478.
    9. Grazzini, Giuseppe & Milazzo, Adriano, 2008. "Thermodynamic analysis of CAES/TES systems for renewable energy plants," Renewable Energy, Elsevier, vol. 33(9), pages 1998-2006.
    10. Abbaspour, M. & Satkin, M. & Mohammadi-Ivatloo, B. & Hoseinzadeh Lotfi, F. & Noorollahi, Y., 2013. "Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)," Renewable Energy, Elsevier, vol. 51(C), pages 53-59.
    11. Zhang, Yuan & Yang, Ke & Li, Xuemei & Xu, Jianzhong, 2013. "The thermodynamic effect of thermal energy storage on compressed air energy storage system," Renewable Energy, Elsevier, vol. 50(C), pages 227-235.
    12. Zhao, Pan & Wang, Mingkun & Wang, Jiangfeng & Dai, Yiping, 2015. "A preliminary dynamic behaviors analysis of a hybrid energy storage system based on adiabatic compressed air energy storage and flywheel energy storage system for wind power application," Energy, Elsevier, vol. 84(C), pages 825-839.
    13. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    14. Mousavi G, S.M. & Faraji, Faramarz & Majazi, Abbas & Al-Haddad, Kamal, 2017. "A comprehensive review of Flywheel Energy Storage System technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 477-490.
    15. Zhao, Pan & Dai, Yiping & Wang, Jiangfeng, 2014. "Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application," Energy, Elsevier, vol. 70(C), pages 674-684.
    16. Zhang, Yuning & Tang, Ningning & Niu, Yuguang & Du, Xiaoze, 2016. "Wind energy rejection in China: Current status, reasons and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 322-344.
    17. Shaw, Dein & Cai, Jyun-Yu & Liu, Chien-Ting, 2012. "Efficiency analysis and controller design of a continuous variable planetary transmission for a CAES wind energy system," Applied Energy, Elsevier, vol. 100(C), pages 118-126.
    18. Ghorbanian, K. & Gholamrezaei, M., 2009. "An artificial neural network approach to compressor performance prediction," Applied Energy, Elsevier, vol. 86(7-8), pages 1210-1221, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Huan & Xu, Yujie & Kang, Haoyuan & Guo, Wenbing & Liu, Yu & Zhang, Xinjing & Zhou, Xuezhi & Chen, Haisheng, 2023. "From theory to practice: Evaluating the thermodynamic design landscape of compressed air energy storage systems," Applied Energy, Elsevier, vol. 352(C).
    2. Xu, Qingqing & Wu, Yuhang & Zheng, Wenpei & Gong, Yunhua & Dubljevic, Stevan, 2023. "Modeling and dynamic safety control of compressed air energy storage system," Renewable Energy, Elsevier, vol. 208(C), pages 203-213.
    3. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    4. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad, 2020. "Optimal operating strategy of high-temperature heat and power storage system coupled with a wind farm in energy market," Energy, Elsevier, vol. 210(C).
    5. Qihui Yu & Li Tian & Xiaodong Li & Xin Tan, 2022. "Compressed Air Energy Storage Capacity Configuration and Economic Evaluation Considering the Uncertainty of Wind Energy," Energies, MDPI, vol. 15(13), pages 1-30, June.
    6. Mito, Mohamed T. & Ma, Xianghong & Albuflasa, Hanan & Davies, Philip A., 2019. "Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 669-685.
    7. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Guo, Huan & Xu, Yujie & Zhu, Yilin & Zhou, Xuezhi & Chen, Haisheng, 2022. "Thermal-mechanical coefficient analysis of adiabatic compressor and expander in compressed air energy storage systems," Energy, Elsevier, vol. 244(PB).
    9. Chao Ma & Sen Dong & Jijian Lian & Xiulan Pang, 2019. "Multi-Objective Sizing of Hybrid Energy Storage System for Large-Scale Photovoltaic Power Generation System," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    10. He, Qing & Liu, Hui & Hao, Yinping & Liu, Yaning & Liu, Wenyi, 2018. "Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis," Renewable Energy, Elsevier, vol. 127(C), pages 835-849.
    11. Ding, Jie & Xu, Yujie & Chen, Haisheng & Sun, Wenwen & Hu, Shan & Sun, Shuang, 2019. "Value and economic estimation model for grid-scale energy storage in monopoly power markets," Applied Energy, Elsevier, vol. 240(C), pages 986-1002.
    12. Tiezhou Wu & Wenshan Yu & Lujun Wang & Linxin Guo & Zhiquan Tang, 2019. "Power Distribution Strategy of Microgrid Hybrid Energy Storage System Based on Improved Hierarchical Control," Energies, MDPI, vol. 12(18), pages 1-14, September.
    13. Yi Yan & Xuerui Wang & Ke Li & Xiaopeng Kang & Weizheng Kong & Hongcai Dai, 2022. "Tri-Level Integrated Optimization Design Method of a CCHP Microgrid with Composite Energy Storage," Sustainability, MDPI, vol. 14(9), pages 1-29, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Ruixiong Li & Huanran Wang & Erren Yao & Shuyu Zhang, 2016. "Thermo-Economic Comparison and Parametric Optimizations among Two Compressed Air Energy Storage System Based on Kalina Cycle and ORC," Energies, MDPI, vol. 10(1), pages 1-19, December.
    3. Li, Peng & Hu, Qingya & Han, Zhonghe & Wang, Changxin & Wang, Runxia & Han, Xu & Wang, Yongzhen, 2022. "Thermodynamic analysis and multi-objective optimization of a trigenerative system based on compressed air energy storage under different working media and heating storage media," Energy, Elsevier, vol. 239(PD).
    4. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    5. Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
    6. Zhang, Yi & Xu, Yujie & Zhou, Xuezhi & Guo, Huan & Zhang, Xinjing & Chen, Haisheng, 2019. "Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation," Applied Energy, Elsevier, vol. 239(C), pages 957-968.
    7. Peng, Hao & Yang, Yu & Li, Rui & Ling, Xiang, 2016. "Thermodynamic analysis of an improved adiabatic compressed air energy storage system," Applied Energy, Elsevier, vol. 183(C), pages 1361-1373.
    8. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    9. Kondoh, Junji & Funamoto, Takuji & Nakanishi, Taisuke & Arai, Ryohei, 2018. "Energy characteristics of a fixed-speed flywheel energy storage system with direct grid-connection," Energy, Elsevier, vol. 165(PB), pages 701-708.
    10. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    11. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    12. Huan Guo & Haoyuan Kang & Yujie Xu & Mingzhi Zhao & Yilin Zhu & Hualiang Zhang & Haisheng Chen, 2023. "Review of Coupling Methods of Compressed Air Energy Storage Systems and Renewable Energy Resources," Energies, MDPI, vol. 16(12), pages 1-22, June.
    13. He, Yang & MengWang, & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2021. "Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation," Energy, Elsevier, vol. 222(C).
    14. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    15. Zhang, Yuan & Yang, Ke & Hong, Hui & Zhong, Xiaohui & Xu, Jianzhong, 2016. "Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid," Renewable Energy, Elsevier, vol. 99(C), pages 682-697.
    16. Zhou, Qian & Du, Dongmei & Lu, Chang & He, Qing & Liu, Wenyi, 2019. "A review of thermal energy storage in compressed air energy storage system," Energy, Elsevier, vol. 188(C).
    17. Zhao, Pan & Wang, Peizi & Xu, Wenpan & Zhang, Shiqiang & Wang, Jiangfeng & Dai, Yiping, 2021. "The survey of the combined heat and compressed air energy storage (CH-CAES) system with dual power levels turbomachinery configuration for wind power peak shaving based spectral analysis," Energy, Elsevier, vol. 215(PB).
    18. Hemmati, Reza & Saboori, Hedayat, 2016. "Emergence of hybrid energy storage systems in renewable energy and transport applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 11-23.
    19. Hossein Safaei & Michael J. Aziz, 2017. "Thermodynamic Analysis of Three Compressed Air Energy Storage Systems: Conventional, Adiabatic, and Hydrogen-Fueled," Energies, MDPI, vol. 10(7), pages 1-31, July.
    20. Muhammad Jabir & Hazlee Azil Illias & Safdar Raza & Hazlie Mokhlis, 2017. "Intermittent Smoothing Approaches for Wind Power Output: A Review," Energies, MDPI, vol. 10(10), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:125:y:2018:i:c:p:121-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.