IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v124y2018icp155-164.html
   My bibliography  Save this article

Biofuel production from olive mill wastewater through its Ni/Al2O3 and Ru/Al2O3 catalyzed supercritical water gasification

Author

Listed:
  • Kıpçak, Ekin
  • Akgün, Mesut

Abstract

This article presents the findings of our research regarding the supercritical water gasification of a real biomass, olive mill wastewater, with Ni/Al2O3 and Ru/Al2O3 catalysts. The experiments were performed at five reaction temperatures between 400 and 600 °C, for five reaction times ranging from 30 to 150 s and at a constant pressure of 25 MPa. It was seen that the employment of catalysts enhanced the gasification and biofuel production yield, which mainly involved methane and hydrogen. Ni/Al2O3 was selective for hydrogen formation, whereas Ru/Al2O3 favored the formation of methane. The highest calorific value of the produced biofuel was obtained as 56123 kJ/m3 with Ru/Al2O3 at 600 °C and 60 s. Apart from biofuel production, the simultaneous treatment of the wastewater was also accomplished. At elevated temperatures and times, treatment efficiencies greater than 97% based on total organic carbon conversion were reached. Moreover, the kinetic evaluation of the catalytic supercritical water gasification of olive mill wastewater was performed based on first order reaction kinetics.

Suggested Citation

  • Kıpçak, Ekin & Akgün, Mesut, 2018. "Biofuel production from olive mill wastewater through its Ni/Al2O3 and Ru/Al2O3 catalyzed supercritical water gasification," Renewable Energy, Elsevier, vol. 124(C), pages 155-164.
  • Handle: RePEc:eee:renene:v:124:y:2018:i:c:p:155-164
    DOI: 10.1016/j.renene.2017.06.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117305797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    2. Tapah, B.F. & Santos, R.C.D. & Leeke, G.A., 2014. "Processing of glycerol under sub and supercritical water conditions," Renewable Energy, Elsevier, vol. 62(C), pages 353-361.
    3. Gong, M. & Zhu, W. & Xu, Z.R. & Zhang, H.W. & Yang, H.P., 2014. "Influence of sludge properties on the direct gasification of dewatered sewage sludge in supercritical water," Renewable Energy, Elsevier, vol. 66(C), pages 605-611.
    4. Kraiem, Nesrine & Jeguirim, Mejdi & Limousy, Lionel & Lajili, Marzouk & Dorge, Sophie & Michelin, Laure & Said, Rachid, 2014. "Impregnation of olive mill wastewater on dry biomasses: Impact on chemical properties and combustion performances," Energy, Elsevier, vol. 78(C), pages 479-489.
    5. Minowa, Tomoaki & Inoue, Seiichi, 1999. "Hydrogen production from biomass by catalytic gasification in hot compressed water," Renewable Energy, Elsevier, vol. 16(1), pages 1114-1117.
    6. Saxena, R.C. & Adhikari, D.K. & Goyal, H.B., 2009. "Biomass-based energy fuel through biochemical routes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 167-178, January.
    7. Guo, Y. & Wang, S.Z. & Xu, D.H. & Gong, Y.M. & Ma, H.H. & Tang, X.Y., 2010. "Review of catalytic supercritical water gasification for hydrogen production from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 334-343, January.
    8. Molino, A. & Migliori, M. & Macrì, D. & Valerio, V. & Villone, A. & Nanna, F. & Iovane, P. & Marino, T., 2016. "Glucose gasification in super-critical water conditions for both syngas production and green chemicals with a continuous process," Renewable Energy, Elsevier, vol. 91(C), pages 451-455.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samiee-Zafarghandi, Roudabeh & Karimi-Sabet, Javad & Abdoli, Mohammad Ali & Karbassi, Abdolreza, 2018. "Supercritical water gasification of microalga Chlorella PTCC 6010 for hydrogen production: Box-Behnken optimization and evaluating catalytic effect of MnO2/SiO2 and NiO/SiO2," Renewable Energy, Elsevier, vol. 126(C), pages 189-201.
    2. Wen, Wen & Zhang, Qin, 2015. "A design of straw acquisition mode for China's straw power plant based on supply chain coordination," Renewable Energy, Elsevier, vol. 76(C), pages 369-374.
    3. Tekin, Kubilay & Karagöz, Selhan & Bektaş, Sema, 2014. "A review of hydrothermal biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 673-687.
    4. Wang, Zhanwu & Wang, Zhenfeng & Tahir, Nadeem & Wang, Heng & Li, Jin & Xu, Guangyin, 2020. "Study of synergetic development in straw power supply chain: Straw price and government subsidy as incentive," Energy Policy, Elsevier, vol. 146(C).
    5. Florentina Maxim & Iuliana Poenaru & Elena Ecaterina Toma & Giuseppe Stefan Stoian & Florina Teodorescu & Cristian Hornoiu & Speranta Tanasescu, 2021. "Functional Materials for Waste-to-Energy Processes in Supercritical Water," Energies, MDPI, vol. 14(21), pages 1-23, November.
    6. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    8. Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.
    9. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    10. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    11. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    12. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    13. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    14. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Pasquale Iannotta & Giuseppe Caputo & Francesca Scargiali & Sonia Longo & Maurizio Cellura & Alberto Brucato, 2020. "Combined Gasification-Oxidation System for Waste Treatment with Supercritical Water: LCA and Performance Analysis," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    16. Pätäri, Satu & Puumalainen, Kaisu & Jantunen, Ari & Sandstrüm, Jaana, 2011. "The interface of the energy and forest sectors--Potential players in the bioenergy business," International Journal of Production Economics, Elsevier, vol. 131(1), pages 322-332, May.
    17. Goh, Chun Sheng & Lee, Keat Teong, 2010. "A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 842-848, February.
    18. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.
    19. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    20. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:124:y:2018:i:c:p:155-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.