IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v119y2018icp649-661.html
   My bibliography  Save this article

1D model for the energy yield calculation of natural convection solar air collectors

Author

Listed:
  • Demou, A.D.
  • Grigoriadis, D.G.E.

Abstract

A one dimensional model has been developed and presented to calculate the seasonal energy yield of solar air collectors. This model takes into account local meteorological conditions, the effects of geometrical configuration, materials used as well as the orientation of a solar air collector system. It can provide the temporal variation of the operating temperatures, heat transfer rates and ultimately the energy yield of the system for the duration of a whole heating season. The model is used to conduct a parametric investigation of the system efficiency, assessing the effects of wall-glass spacing, wall thickness, solar-absorbing surface material and orientation. The energy yield of a reference system installed in a ”hot” or a ”cold” climate is examined and discussed. It was found that the efficiency of the collector was more sensitive to the material of the solar-absorbing surface than any other parameter examined. Moreover, it was found that although in cold climates the daily efficiency of the system was lower, because of the extended heating season, the seasonal energy yield of the system was comparable to hotter climates.

Suggested Citation

  • Demou, A.D. & Grigoriadis, D.G.E., 2018. "1D model for the energy yield calculation of natural convection solar air collectors," Renewable Energy, Elsevier, vol. 119(C), pages 649-661.
  • Handle: RePEc:eee:renene:v:119:y:2018:i:c:p:649-661
    DOI: 10.1016/j.renene.2017.12.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811731234X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.12.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karsli, Suleyman, 2007. "Performance analysis of new-design solar air collectors for drying applications," Renewable Energy, Elsevier, vol. 32(10), pages 1645-1660.
    2. Karim, Md Azharul & Hawlader, M.N.A, 2006. "Performance investigation of flat plate, v-corrugated and finned air collectors," Energy, Elsevier, vol. 31(4), pages 452-470.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Choi, Youngjin, 2020. "Performance evaluation of air and liquid-based solar heating systems in various climates in East Asia," Renewable Energy, Elsevier, vol. 162(C), pages 685-700.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shams, S.M.N. & Mc Keever, M. & Mc Cormack, S. & Norton, B., 2016. "Design and experiment of a new solar air heating collector," Energy, Elsevier, vol. 100(C), pages 374-383.
    2. Hedayatizadeh, Mahdi & Sarhaddi, Faramarz & Safavinejad, Ali & Ranjbar, Faramarz & Chaji, Hossein, 2016. "Exergy loss-based efficiency optimization of a double-pass/glazed v-corrugated plate solar air heater," Energy, Elsevier, vol. 94(C), pages 799-810.
    3. Buker, Mahmut Sami & Riffat, Saffa B., 2015. "Building integrated solar thermal collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 327-346.
    4. Cho, Honghyun, 2015. "Comparative study on the performance and exergy efficiency of a solar hybrid heat pump using R22 and R744," Energy, Elsevier, vol. 93(P2), pages 1267-1276.
    5. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    6. Akpinar, Ebru Kavak & Koçyigit, Fatih, 2010. "Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates," Applied Energy, Elsevier, vol. 87(11), pages 3438-3450, November.
    7. Mohammadi, K. & Sabzpooshani, M., 2013. "Comprehensive performance evaluation and parametric studies of single pass solar air heater with fins and baffles attached over the absorber plate," Energy, Elsevier, vol. 57(C), pages 741-750.
    8. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    9. Ge, T.S. & Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Chen, X.M. & Ma, T. & Wu, X.N. & Sun, X.L. & Chen, J.F., 2018. "Solar heating and cooling: Present and future development," Renewable Energy, Elsevier, vol. 126(C), pages 1126-1140.
    10. Ozgen, Filiz & Esen, Mehmet & Esen, Hikmet, 2009. "Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans," Renewable Energy, Elsevier, vol. 34(11), pages 2391-2398.
    11. Zukowski, M., 2015. "Experimental investigations of thermal and flow characteristics of a novel microjet air solar heater," Applied Energy, Elsevier, vol. 142(C), pages 10-20.
    12. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2013. "A review on the thermodynamic optimisation and modelling of the solar thermal Brayton cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 677-690.
    13. Sivakumar, S. & Velmurugan, C. & Dhas, D.S. Ebenezer Jacob & Solomon, A. Brusly & Dev Wins, K. Leo, 2020. "Effect of nano cupric oxide coating on the forced convection performance of a mixed-mode flat plate solar dryer," Renewable Energy, Elsevier, vol. 155(C), pages 1165-1172.
    14. Karim, M.A. & Perez, E. & Amin, Z.M., 2014. "Mathematical modelling of counter flow v-grove solar air collector," Renewable Energy, Elsevier, vol. 67(C), pages 192-201.
    15. Hu, Jianjun & Liu, Kaitong & Guo, Meng & Zhang, Guangqiu & Chu, Zhongliang & Wang, Meida, 2019. "Performance improvement of baffle-type solar air collector based on first chamber narrowing," Renewable Energy, Elsevier, vol. 135(C), pages 701-710.
    16. Debnath, Suman & Das, Biplab & Randive, P.R. & Pandey, K.M., 2018. "Performance analysis of solar air collector in the climatic condition of North Eastern India," Energy, Elsevier, vol. 165(PB), pages 281-298.
    17. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    18. Harmim, A. & Belhamel, M. & Boukar, M. & Amar, M., 2010. "Experimental investigation of a box-type solar cooker with a finned absorber plate," Energy, Elsevier, vol. 35(9), pages 3799-3802.
    19. Saxena, Abhishek & Srivastava, Ghanshyam & Tirth, Vineet, 2015. "Design and thermal performance evaluation of a novel solar air heater," Renewable Energy, Elsevier, vol. 77(C), pages 501-511.
    20. Ravi, Ravi Kant & Saini, Rajeshwer Prasad, 2016. "A review on different techniques used for performance enhancement of double pass solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 941-952.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:119:y:2018:i:c:p:649-661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.