IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v188y2022icp603-618.html
   My bibliography  Save this article

An experimental study on gas and liquid two-phase flow in orientated-type flow channels of proton exchange membrane fuel cells by using a side-view method

Author

Listed:
  • Guo, Hang
  • Zhao, Qiang
  • Ye, Fang

Abstract

Proton exchange membrane fuel cells are widely utilized in the areas of aerospace, military and vehicles. Enhancing the reactant transportation and improving water, heat management can effectively increase the electrochemical reaction rate and power output. Orientated-type flow channels have been proved to be effective on improving mass transporting and enhancing performance. In this study, a flow field plate with transparent observation window, whose channel side wall is designed as transparent side-plates, is fabricated to achieve the side-view observation on liquid movement behaviors inside fuel cells. The visualization results of reactant gas and liquid water generation and flowing behaviors in channel regions are observed through the side direction for the first time. Experimental results infer that: orientated-type flow channels having baffles affect droplet generation, moving and shape in gas flow channels, and higher current densities result in more liquid water generation. The baffle downstream region having sudden expanded region slows down droplet moving, and baffle upstream sides accelerates droplet moving. Moreover, the generated heat of electrochemical reaction cannot satisfy maintaining a higher cell working temperature requirement, and an extra heating procedure is required.

Suggested Citation

  • Guo, Hang & Zhao, Qiang & Ye, Fang, 2022. "An experimental study on gas and liquid two-phase flow in orientated-type flow channels of proton exchange membrane fuel cells by using a side-view method," Renewable Energy, Elsevier, vol. 188(C), pages 603-618.
  • Handle: RePEc:eee:renene:v:188:y:2022:i:c:p:603-618
    DOI: 10.1016/j.renene.2022.02.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perng, Shiang-Wuu & Wu, Horng-Wen & Chen, Yi-Bin & Zeng, Yi-Kai, 2019. "Performance enhancement of a high temperature proton exchange membrane fuel cell by bottomed-baffles in bipolar-plate channels," Applied Energy, Elsevier, vol. 255(C).
    2. Shao, Heng & Qiu, Diankai & Peng, Linfa & Yi, Peiyun & Lai, Xinmin, 2019. "Modeling and analysis of water droplet dynamics in the dead-ended anode gas channel for proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 138(C), pages 842-851.
    3. Guo, Hang & Liu, Xuan & Zhao, Jian Fu & Ye, Fang & Ma, Chong Fang, 2014. "Experimental study of two-phase flow in a proton exchange membrane fuel cell in short-term microgravity condition," Applied Energy, Elsevier, vol. 136(C), pages 509-518.
    4. Guo, Hang & Liu, Xuan & Zhao, Jian Fu & Ye, Fang & Ma, Chong Fang, 2016. "Effect of low gravity on water removal inside proton exchange membrane fuel cells (PEMFCs) with different flow channel configurations," Energy, Elsevier, vol. 112(C), pages 926-934.
    5. Liu, Jia Xing & Guo, Hang & Ye, Fang & Ma, Chong Fang, 2017. "Two-dimensional analytical model of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 119(C), pages 299-308.
    6. Perng, Shiang-Wuu & Wu, Horng-Wen, 2015. "A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC," Applied Energy, Elsevier, vol. 143(C), pages 81-95.
    7. Qin, Yanzhou & Li, Xianguo & Jiao, Kui & Du, Qing & Yin, Yan, 2014. "Effective removal and transport of water in a PEM fuel cell flow channel having a hydrophilic plate," Applied Energy, Elsevier, vol. 113(C), pages 116-126.
    8. Ashley Fly & Kyoungyoun Kim & John Gordon & Daniel Butcher & Rui Chen, 2019. "Liquid Water Transport in Porous Metal Foam Flow-Field Fuel Cells: A Two-Phase Numerical Modelling and Ex-Situ Experimental Study," Energies, MDPI, vol. 12(7), pages 1-14, March.
    9. Cho, J.I.S. & Neville, T.P. & Trogadas, P. & Meyer, Q. & Wu, Yunsong & Ziesche, R. & Boillat, P. & Cochet, M. & Manzi-Orezzoli, V. & Shearing, P. & Brett, D.J.L. & Coppens, M.-O., 2019. "Visualization of liquid water in a lung-inspired flow-field based polymer electrolyte membrane fuel cell via neutron radiography," Energy, Elsevier, vol. 170(C), pages 14-21.
    10. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jinguang & Ke, Yuzhi & Yuan, Wei & Bai, Yafeng & Zhang, Baotong & Liu, Zi'ang & Lin, Zhenhe & Liu, Qingsen & Tang, Yong, 2023. "Enhancement of two-phase flow and mass transport by a two-dimensional flow channel with variable cross-sections in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 219(P2).
    2. Zhu, Xinning & Liu, Rongkang & Su, Liang & Wang, Xi & Chu, Xuyang & Ma, Yao & Wu, Linjing & Song, Guangji & Zhou, Wei, 2023. "Synergistic mass transfer and performance stability of a proton exchange membrane fuel cell with traveling wave flow channels," Energy, Elsevier, vol. 285(C).
    3. Pei, Houchang & Xiao, Chenguang & Tu, Zhengkai, 2022. "Experimental study on liquid water formation characteristics in a novel transparent proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 321(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Hao & Guo, Hang & Ye, Fang & MA, Chong Fang, 2022. "Cell performance and flow losses of proton exchange membrane fuel cells with orientated-type flow channels," Renewable Energy, Elsevier, vol. 181(C), pages 1338-1352.
    2. Li, Jinguang & Ke, Yuzhi & Yuan, Wei & Bai, Yafeng & Zhang, Baotong & Liu, Zi'ang & Lin, Zhenhe & Liu, Qingsen & Tang, Yong, 2023. "Enhancement of two-phase flow and mass transport by a two-dimensional flow channel with variable cross-sections in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 219(P2).
    3. Yulin Wang & Xiangling Liao & Guokun Liu & Haokai Xu & Chao Guan & Huixuan Wang & Hua Li & Wei He & Yanzhou Qin, 2023. "Review of Flow Field Designs for Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 16(10), pages 1-54, May.
    4. Bai, Fan & Quan, Hong-Bing & Yin, Ren-Jie & Zhang, Zhuo & Jin, Shu-Qi & He, Pu & Mu, Yu-Tong & Gong, Xiao-Ming & Tao, Wen-Quan, 2022. "Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 324(C).
    5. Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
    6. Li, Zhengyan & Xian, Lei & Wang, Qiuyu & Wang, Junwei & Chen, Lei & Tao, Wen-Quan, 2024. "Performance enhancement of proton exchange membrane fuel cell by utilizing a blocked regulated tri-serpentine flow field: Comprehensive optimization with variable block heights and multiple auxiliary ," Applied Energy, Elsevier, vol. 372(C).
    7. Xu, Sheng & Yin, Bifeng & Li, Zekai & Dong, Fei, 2023. "A review on gas purge of proton exchange membrane fuel cells: Mechanisms, experimental approaches, numerical approaches, and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    8. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    9. Zhang, Xian-Wen & Wang, Xue-Jian & Cheng, Xiao-Zhang & Jin, Lei & Zhu, Jian-Wei & Zhou, Tao-Tao, 2020. "Numerical analysis of global and local performance variations of proton exchange membrane fuel cell with different bend layouts and flow directions," Energy, Elsevier, vol. 207(C).
    10. Ashrafi, Moosa & Shams, Mehrzad, 2017. "The effects of flow-field orientation on water management in PEM fuel cells with serpentine channels," Applied Energy, Elsevier, vol. 208(C), pages 1083-1096.
    11. Zhao, Junjie & Tu, Zhengkai & Chan, Siew Hwa, 2022. "In-situ measurement of humidity distribution and its effect on the performance of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 239(PD).
    12. Hasheminasab, M. & Kermani, M.J. & Nourazar, S.S. & Khodsiani, M.H., 2020. "A novel experimental based statistical study for water management in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 264(C).
    13. Zijun Li & Jianguo Wang & Shubo Wang & Weiwei Li & Xiaofeng Xie, 2023. "Liquid Water Transport Characteristics and Droplet Dynamics of Proton Exchange Membrane Fuel Cells with 3D Wave Channel," Energies, MDPI, vol. 16(16), pages 1-19, August.
    14. Gong, Fan & Yang, Xiaolong & Zhang, Xun & Mao, Zongqiang & Gao, Weitao & Wang, Cheng, 2023. "The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 329(C).
    15. Qiao, Jia Nan & Guo, Hang & Ye, Fang & Chen, Hao, 2024. "A nonlinear contraction channel design inspired by typical mathematical curves: Boosting net power and water discharge of PEM fuel cells," Applied Energy, Elsevier, vol. 357(C).
    16. Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).
    17. Zhang, Zhiqing & Liu, Hui & Yang, Dayong & Li, Junming & Lu, Kai & Ye, Yanshuai & Tan, Dongli, 2024. "Performance enhancements of power density and exergy efficiency for high-temperature proton exchange membrane fuel cell based on RSM-NSGA III," Energy, Elsevier, vol. 301(C).
    18. Liu, Shihua & Chen, Tao & Zhang, Cheng & Xie, Yi, 2020. "Study on the performance of proton exchange membrane fuel cell (PEMFC) with dead-ended anode in gravity environment," Applied Energy, Elsevier, vol. 261(C).
    19. Wang, Yulin & Wang, Xiaoai & Fan, Yuanzhi & He, Wei & Guan, Jinglei & Wang, Xiaodong, 2022. "Numerical Investigation of Tapered Flow Field Configurations for Enhanced Polymer Electrolyte Membrane Fuel Cell Performance," Applied Energy, Elsevier, vol. 306(PA).
    20. Yin, Yan & Wu, Shiyu & Qin, Yanzhou & Otoo, Obed Nenyi & Zhang, Junfeng, 2020. "Quantitative analysis of trapezoid baffle block sloping angles on oxygen transport and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:188:y:2022:i:c:p:603-618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.