IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i3p1075-1080.html
   My bibliography  Save this article

Wind energy conversion with a variable-ratio gearbox: design and analysis

Author

Listed:
  • Hall, John F.
  • Mecklenborg, Christine A.
  • Chen, Dongmei
  • Pratap, Siddharth B.

Abstract

Variable-speed wind turbines are able to adapt to low wind speeds and therefore have greater efficiency than fixed-speed turbines during partial-load operation. Unfortunately, the high cost and low reliability of the electronics that enable variation in speed have discouraged this mode of operation for distributed wind turbines. Alternatively, a Variable-Ratio Gearbox (VRG) can be integrated into the fixed-speed wind turbine to facilitate operation with a discrete set of variable speeds that boost efficiency. The VRG concept is based upon mature technology taken from the automotive industry and is characterized by low cost and high reliability. In this paper, a model-based design methodology is introduced to study the performance gain of integrating a VRG into a fixed-speed stall-regulated wind turbine system. The results demonstrate how this device can improve the efficiency of the fixed-speed turbine in the partial-load region and the potential to use the VRG to limit power in the full-load region where pitch control is often used.

Suggested Citation

  • Hall, John F. & Mecklenborg, Christine A. & Chen, Dongmei & Pratap, Siddharth B., 2011. "Wind energy conversion with a variable-ratio gearbox: design and analysis," Renewable Energy, Elsevier, vol. 36(3), pages 1075-1080.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:3:p:1075-1080
    DOI: 10.1016/j.renene.2010.08.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110004088
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.08.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walmir Freitas & Ahmed Faheem Zobaa & Jose C.M. Vieira & James S. McConnach, 2005. "Issues related to wind energy conversion systems," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 3(4), pages 313-323.
    2. Baroudi, Jamal A. & Dinavahi, Venkata & Knight, Andrew M., 2007. "A review of power converter topologies for wind generators," Renewable Energy, Elsevier, vol. 32(14), pages 2369-2385.
    3. Arifujjaman, Md. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Reliability analysis of grid connected small wind turbine power electronics," Applied Energy, Elsevier, vol. 86(9), pages 1617-1623, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spertino, Filippo & Di Leo, Paolo & Ilie, Irinel-Sorin & Chicco, Gianfranco, 2012. "DFIG equivalent circuit and mismatch assessment between manufacturer and experimental power-wind speed curves," Renewable Energy, Elsevier, vol. 48(C), pages 333-343.
    2. Hall, John F. & Chen, Dongmei, 2012. "Performance of a 100 kW wind turbine with a Variable Ratio Gearbox," Renewable Energy, Elsevier, vol. 44(C), pages 261-266.
    3. Kamel, Rashad M., 2014. "Employing two novel mechanical fault ride through controllers for keeping stability of fixed speed wind generation systems hosted by standalone micro-grid," Applied Energy, Elsevier, vol. 116(C), pages 398-408.
    4. Yin, Xiu-xing & Lin, Yong-gang & Li, Wei & Liu, Hong-wei & Gu, Ya-jing, 2014. "Output power control for hydro-viscous transmission based continuously variable speed wind turbine," Renewable Energy, Elsevier, vol. 72(C), pages 395-405.
    5. Radu Saulescu & Mircea Neagoe & Codruta Jaliu, 2018. "Conceptual Synthesis of Speed Increasers for Wind Turbine Conversion Systems," Energies, MDPI, vol. 11(9), pages 1-33, August.
    6. Mircea Neagoe & Radu Saulescu & Codruta Jaliu, 2019. "Design and Simulation of a 1 DOF Planetary Speed Increaser for Counter-Rotating Wind Turbines with Counter-Rotating Electric Generators," Energies, MDPI, vol. 12(9), pages 1-19, May.
    7. Li, Wenlong & Chau, K.T. & Lee, Christopher H.T. & Ching, T.W. & Chen, Mu & Jiang, J.Z., 2017. "A new linear magnetic gear with adjustable gear ratios and its application for direct-drive wave energy extraction," Renewable Energy, Elsevier, vol. 105(C), pages 199-208.
    8. Khakpour Nejadkhaki, Hamid & Chaudhari, Swanil & Hall, John F., 2018. "A design methodology for selecting ratios for a variable ratio gearbox used in a wind turbine with active blades," Renewable Energy, Elsevier, vol. 118(C), pages 1041-1051.
    9. Francesco Bottiglione & Giacomo Mantriota & Marco Valle, 2018. "Power-Split Hydrostatic Transmissions for Wind Energy Systems," Energies, MDPI, vol. 11(12), pages 1-15, December.
    10. Mircea Neagoe & Radu Saulescu & Codruta Jaliu & Petru A. Simionescu, 2020. "A Generalized Approach to the Steady-State Efficiency Analysis of Torque-Adding Transmissions Used in Renewable Energy Systems," Energies, MDPI, vol. 13(17), pages 1-18, September.
    11. Cristina Vázquez-Hernández & Javier Serrano-González & Gabriel Centeno, 2017. "A Market-Based Analysis on the Main Characteristics of Gearboxes Used in Onshore Wind Turbines," Energies, MDPI, vol. 10(11), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González, L.G. & Garcerá, G. & Figueres, E. & González, R., 2010. "Effects of the PWM carrier signals synchronization on the DC-link current in back-to-back converters," Applied Energy, Elsevier, vol. 87(8), pages 2491-2499, August.
    2. Carranza, O. & Garcerá, G. & Figueres, E. & González, L.G., 2010. "Peak current mode control of three-phase boost rectifiers in discontinuous conduction mode for small wind power generators," Applied Energy, Elsevier, vol. 87(8), pages 2728-2736, August.
    3. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    4. Melício, R. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction," Applied Energy, Elsevier, vol. 88(4), pages 1322-1330, April.
    5. Carranza, O. & Figueres, E. & Garcerá, G. & Gonzalez, L.G., 2011. "Comparative study of speed estimators with highly noisy measurement signals for Wind Energy Generation Systems," Applied Energy, Elsevier, vol. 88(3), pages 805-813, March.
    6. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    8. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    9. Audierne, Etienne & Elizondo, Jorge & Bergami, Leonardo & Ibarra, Humberto & Probst, Oliver, 2010. "Analysis of the furling behavior of small wind turbines," Applied Energy, Elsevier, vol. 87(7), pages 2278-2292, July.
    10. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    11. Zhang, Cai Wen & Zhang, Tieling & Chen, Nan & Jin, Tongdan, 2013. "Reliability modeling and analysis for a novel design of modular converter system of wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 86-94.
    12. Seixas, M. & Melício, R. & Mendes, V.M.F. & Couto, C., 2016. "Blade pitch control malfunction simulation in a wind energy conversion system with MPC five-level converter," Renewable Energy, Elsevier, vol. 89(C), pages 339-350.
    13. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    14. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    15. Rimkevicius, Sigitas & Kaliatka, Algirdas & Valincius, Mindaugas & Dundulis, Gintautas & Janulionis, Remigijus & Grybenas, Albertas & Zutautaite, Inga, 2012. "Development of approach for reliability assessment of pipeline network systems," Applied Energy, Elsevier, vol. 94(C), pages 22-33.
    16. Yang, Ting & Pen, Haibo & Wang, Dan & Wang, Zhaoxia, 2016. "Harmonic analysis in integrated energy system based on compressed sensing," Applied Energy, Elsevier, vol. 165(C), pages 583-591.
    17. Ahmed G. Abo-Khalil & Ali S. Alghamdi & Ali M. Eltamaly & M. S. Al-Saud & Praveen R. P. & Khairy Sayed & G. R. Bindu & Iskander Tlili, 2019. "Design of State Feedback Current Controller for Fast Synchronization of DFIG in Wind Power Generation Systems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    18. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    19. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.
    20. Mohamed Abdelrahem & Christoph Hackl & Ralph Kennel & Jose Rodriguez, 2021. "Low Sensitivity Predictive Control for Doubly-Fed Induction Generators Based Wind Turbine Applications," Sustainability, MDPI, vol. 13(16), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:3:p:1075-1080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.