The use of the possibility theory to investigate the epistemic uncertainties within scenario-based earthquake risk assessments
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-010-9578-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tom Beer, 2007. "The Natural Hazards Theme of the International Year of Planet Earth," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(3), pages 469-480, September.
- Baudrit, C. & Dubois, D., 2006. "Practical representations of incomplete probabilistic knowledge," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 86-108, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Elham Boostan & Nadia Tahernia & Ali Shafiee, 2015. "Fuzzy—probabilistic seismic hazard assessment, case study: Tehran region, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 525-541, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nicola Pedroni & Enrico Zio, 2013. "Uncertainty Analysis in Fault Tree Models with Dependent Basic Events," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1146-1173, June.
- Tu Duong Le Duy & Laurence Dieulle & Dominique Vasseur & Christophe Bérenguer & Mathieu Couplet, 2013. "An alternative comprehensive framework using belief functions for parameter and model uncertainty analysis in nuclear probabilistic risk assessment applications," Journal of Risk and Reliability, , vol. 227(5), pages 471-490, October.
- Didier Dubois, 2010. "Representation, Propagation, and Decision Issues in Risk Analysis Under Incomplete Probabilistic Information," Risk Analysis, John Wiley & Sons, vol. 30(3), pages 361-368, March.
- Helton, Jon C. & Johnson, Jay D., 2011. "Quantification of margins and uncertainties: Alternative representations of epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1034-1052.
- Sankararaman, Shankar & Mahadevan, Sankaran, 2011. "Model validation under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1232-1241.
- Coppi, Renato & Gil, Maria A. & Kiers, Henk A.L., 2006. "The fuzzy approach to statistical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 1-14, November.
- Kais Zaman & Saraf Anika Kritee, 2014. "An Optimization-Based Approach to Calculate Confidence Interval on Mean Value with Interval Data," Journal of Optimization, Hindawi, vol. 2014, pages 1-8, July.
- Jing-Li Fan & Shuo Shen & Jian-Da Wang & Shi-Jie Wei & Xian Zhang & Ping Zhong & Hang Wang, 2020. "Scientific and technological power and international cooperation in the field of natural hazards: a bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 807-827, July.
- Ripamonti, G. & Lonati, G. & Baraldi, P. & Cadini, F. & Zio, E., 2013. "Uncertainty propagation in a model for the estimation of the ground level concentration of dioxin/furans emitted from a waste gasification plant," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 98-105.
- Jeremy Rohmer & Eric Chojnacki, 2021. "Forecast of environment systems using expert judgements: performance comparison between the possibilistic and the classical model," Environment Systems and Decisions, Springer, vol. 41(1), pages 131-146, March.
- Luciano Stefanini & Maria Letizia Guerra, 2016. "On Possibilistic Representations of Fuzzy Intervals," Working Papers 1602, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2016.
- Antoine, V. & Quost, B. & Masson, M.-H. & Denœux, T., 2012. "CECM: Constrained evidential C-means algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 894-914.
- Sankararaman, Shankar & Mahadevan, Sankaran, 2011. "Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 814-824.
- Zaman, Kais & Rangavajhala, Sirisha & McDonald, Mark P. & Mahadevan, Sankaran, 2011. "A probabilistic approach for representation of interval uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 117-130.
- Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A critical discussion and practical recommendations on some issues relevant to the non-probabilistic treatment of uncertainty in engineering risk assessment," Post-Print hal-01652230, HAL.
- Montes, Ignacio & Miranda, Enrique & Montes, Susana, 2014. "Stochastic dominance with imprecise information," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 868-886.
- Simon, Christophe & Bicking, Frédérique, 2017. "Hybrid computation of uncertainty in reliability analysis with p-box and evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 629-638.
- Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A Critical Discussion and Practical Recommendations on Some Issues Relevant to the Nonprobabilistic Treatment of Uncertainty in Engineering Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1315-1340, July.
- Aven, T., 2011. "Interpretations of alternative uncertainty representations in a reliability and risk analysis context," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 353-360.
More about this item
Keywords
Earthquake risk analysis; Epistemic uncertainty; Possibility theory; Fuzzy logic; Fuzzy random variable;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:56:y:2011:i:3:p:613-632. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.