IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i1p178-183.html
   My bibliography  Save this article

Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position

Author

Listed:
  • Morio, Jérôme

Abstract

Importance sampling (IS) is a useful simulation technique to estimate critical probability with a better accuracy than Monte Carlo methods. It consists in generating random weighted samples from an auxiliary distribution rather than the distribution of interest. The crucial part of this algorithm is the choice of an efficient auxiliary PDF that has to be able to simulate more rare random events. The optimisation of this auxiliary distribution is often in practice very difficult. In this article, we propose to approach the IS optimal auxiliary density with non-parametric adaptive importance sampling (NAIS). We apply this technique for the probability estimation of spatial launcher impact position since it has currently become a more and more important issue in the field of aeronautics.

Suggested Citation

  • Morio, Jérôme, 2011. "Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 178-183.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:1:p:178-183
    DOI: 10.1016/j.ress.2010.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832010001912
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2010.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neddermeyer, Jan C., 2009. "Computationally Efficient Nonparametric Importance Sampling," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 788-802.
    2. Rubinstein, Reuven Y., 1997. "Optimization of computer simulation models with rare events," European Journal of Operational Research, Elsevier, vol. 99(1), pages 89-112, May.
    3. Reuven Rubinstein, 1999. "The Cross-Entropy Method for Combinatorial and Continuous Optimization," Methodology and Computing in Applied Probability, Springer, vol. 1(2), pages 127-190, September.
    4. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    5. repec:bla:jorssa:v:168:y:2005:i:1:p:261-261 is not listed on IDEAS
    6. Stuart Barber, 2005. "All of Statistics: a Concise Course in Statistical Inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 261-261, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    2. Chen, Jun-Yu & Feng, Yun-Wen & Teng, Da & Lu, Cheng & Fei, Cheng-Wei, 2022. "Support vector machine-based similarity selection method for structural transient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    4. Villén-Altamirano, J., 2014. "Asymptotic optimality of RESTART estimators in highly dependable systems," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 115-124.
    5. Vergé, Christelle & Morio, Jérôme & Moral, Pierre Del, 2016. "An island particle algorithm for rare event analysis," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 63-75.
    6. Cao, Quoc Dung & Choe, Youngjun, 2019. "Cross-entropy based importance sampling for stochastic simulation models," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. J Morio & R Pastel, 2012. "Plug-in estimation of d-dimensional density minimum volume set of a rare event in a complex system," Journal of Risk and Reliability, , vol. 226(3), pages 337-345, June.
    8. Chabridon, Vincent & Balesdent, Mathieu & Bourinet, Jean-Marc & Morio, Jérôme & Gayton, Nicolas, 2018. "Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 164-178.
    9. El Masri, Maxime & Morio, Jérôme & Simatos, Florian, 2021. "Improvement of the cross-entropy method in high dimension for failure probability estimation through a one-dimensional projection without gradient estimation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Balesdent, Mathieu & Morio, Jérôme & Marzat, Julien, 2015. "Recommendations for the tuning of rare event probability estimators," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 68-78.
    11. Dai, Hongzhe & Zhang, Hao & Wang, Wei, 2012. "A support vector density-based importance sampling for reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 86-93.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J Morio & R Pastel, 2012. "Plug-in estimation of d-dimensional density minimum volume set of a rare event in a complex system," Journal of Risk and Reliability, , vol. 226(3), pages 337-345, June.
    2. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    3. K.-P. Hui & N. Bean & M. Kraetzl & Dirk Kroese, 2005. "The Cross-Entropy Method for Network Reliability Estimation," Annals of Operations Research, Springer, vol. 134(1), pages 101-118, February.
    4. Fahimnia, Behnam & Sarkis, Joseph & Eshragh, Ali, 2015. "A tradeoff model for green supply chain planning:A leanness-versus-greenness analysis," Omega, Elsevier, vol. 54(C), pages 173-190.
    5. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2022. "An automated prior robustness analysis in Bayesian model comparison," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 583-602, April.
    6. Ali Eshragh & Jerzy Filar & Michael Haythorpe, 2011. "A hybrid simulation-optimization algorithm for the Hamiltonian cycle problem," Annals of Operations Research, Springer, vol. 189(1), pages 103-125, September.
    7. Qun Niu & Ming You & Zhile Yang & Yang Zhang, 2021. "Economic Emission Dispatch Considering Renewable Energy Resources—A Multi-Objective Cross Entropy Optimization Approach," Sustainability, MDPI, vol. 13(10), pages 1-33, May.
    8. Agbeyegbe, Terence D., 2020. "Bayesian analysis of output gap in Barbados," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    9. Chan, Joshua C.C., 2023. "Comparing stochastic volatility specifications for large Bayesian VARs," Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
    10. Benham, Tim & Duan, Qibin & Kroese, Dirk P. & Liquet, Benoît, 2017. "CEoptim: Cross-Entropy R Package for Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i08).
    11. Ad Ridder, 2004. "Importance Sampling Simulations of Markovian Reliability Systems using Cross Entropy," Tinbergen Institute Discussion Papers 04-018/4, Tinbergen Institute.
    12. Masoud Esmaeilikia & Behnam Fahimnia & Joeseph Sarkis & Kannan Govindan & Arun Kumar & John Mo, 2016. "A tactical supply chain planning model with multiple flexibility options: an empirical evaluation," Annals of Operations Research, Springer, vol. 244(2), pages 429-454, September.
    13. Fahimnia, Behnam & Sarkis, Joseph & Choudhary, Alok & Eshragh, Ali, 2015. "Tactical supply chain planning under a carbon tax policy scheme: A case study," International Journal of Production Economics, Elsevier, vol. 164(C), pages 206-215.
    14. M. Bayat & F. Hooshmand & S. A. MirHassani, 2024. "Scenario-based stochastic model and efficient cross-entropy algorithm for the risk-budgeting problem," Annals of Operations Research, Springer, vol. 341(2), pages 731-755, October.
    15. Joshua Chan & Eric Eisenstat & Xuewen Yu, 2022. "Large Bayesian VARs with Factor Stochastic Volatility: Identification, Order Invariance and Structural Analysis," Papers 2207.03988, arXiv.org.
    16. L. Margolin, 2005. "On the Convergence of the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 201-214, February.
    17. Sze Him Leung & Ji Meng Loh & Chun Yip Yau & Zhengyuan Zhu, 2021. "Spatial Sampling Design Using Generalized Neyman–Scott Process," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 105-127, March.
    18. Nguyen, Hoa T.M. & Chow, Andy H.F. & Ying, Cheng-shuo, 2021. "Pareto routing and scheduling of dynamic urban rail transit services with multi-objective cross entropy method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    19. Shi Yang & Shi Weiping & Wang Mengqiao & Lee Ji-Hyun & Kang Huining & Jiang Hui, 2023. "Accurate and fast small p-value estimation for permutation tests in high-throughput genomic data analysis with the cross-entropy method," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 22(1), pages 1-22, January.
    20. Hao Su & Qun Niu & Zhile Yang, 2023. "Optimal Power Flow Using Improved Cross-Entropy Method," Energies, MDPI, vol. 16(14), pages 1-33, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:1:p:178-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.