IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v189y2011i1p103-12510.1007-s10479-009-0565-9.html
   My bibliography  Save this article

A hybrid simulation-optimization algorithm for the Hamiltonian cycle problem

Author

Listed:
  • Ali Eshragh
  • Jerzy Filar
  • Michael Haythorpe

Abstract

In this paper, we propose a new hybrid algorithm for the Hamiltonian cycle problem by synthesizing the Cross Entropy method and Markov decision processes. In particular, this new algorithm assigns a random length to each arc and alters the Hamiltonian cycle problem to the travelling salesman problem. Thus, there is now a probability corresponding to each arc that denotes the probability of the event “this arc is located on the shortest tour.” Those probabilities are then updated as in cross entropy method and used to set a suitable linear programming model. If the solution of the latter yields any tour, the graph is Hamiltonian. Numerical results reveal that when the size of graph is small, say less than 50 nodes, there is a high chance the algorithm will be terminated in its cross entropy component by simply generating a Hamiltonian cycle, randomly. However, for larger graphs, in most of the tests the algorithm terminated in its optimization component (by solving the proposed linear program). Copyright Springer Science+Business Media, LLC 2011

Suggested Citation

  • Ali Eshragh & Jerzy Filar & Michael Haythorpe, 2011. "A hybrid simulation-optimization algorithm for the Hamiltonian cycle problem," Annals of Operations Research, Springer, vol. 189(1), pages 103-125, September.
  • Handle: RePEc:spr:annopr:v:189:y:2011:i:1:p:103-125:10.1007/s10479-009-0565-9
    DOI: 10.1007/s10479-009-0565-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0565-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0565-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rubinstein, Reuven Y., 1997. "Optimization of computer simulation models with rare events," European Journal of Operational Research, Elsevier, vol. 99(1), pages 89-112, May.
    2. Zdravko I. Botev & Dirk P. Kroese, 2008. "An Efficient Algorithm for Rare-event Probability Estimation, Combinatorial Optimization, and Counting," Methodology and Computing in Applied Probability, Springer, vol. 10(4), pages 471-505, December.
    3. L. Margolin, 2005. "On the Convergence of the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 201-214, February.
    4. Reuven Rubinstein, 1999. "The Cross-Entropy Method for Combinatorial and Continuous Optimization," Methodology and Computing in Applied Probability, Springer, vol. 1(2), pages 127-190, September.
    5. Eugene A. Feinberg, 2000. "Constrained Discounted Markov Decision Processes and Hamiltonian Cycles," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 130-140, February.
    6. Jerzy A. Filar & Dmitry Krass, 1994. "Hamiltonian Cycles and Markov Chains," Mathematics of Operations Research, INFORMS, vol. 19(1), pages 223-237, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantin Avrachenkov & Ali Eshragh & Jerzy A. Filar, 2016. "On transition matrices of Markov chains corresponding to Hamiltonian cycles," Annals of Operations Research, Springer, vol. 243(1), pages 19-35, August.
    2. Michael Haythorpe & Walter Murray, 2022. "Finding a Hamiltonian cycle by finding the global minimizer of a linearly constrained problem," Computational Optimization and Applications, Springer, vol. 81(1), pages 309-336, January.
    3. Ali Eshragh & Jerzy A. Filar & Thomas Kalinowski & Sogol Mohammadian, 2020. "Hamiltonian Cycles and Subsets of Discounted Occupational Measures," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 713-731, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Hoa T.M. & Chow, Andy H.F. & Ying, Cheng-shuo, 2021. "Pareto routing and scheduling of dynamic urban rail transit services with multi-objective cross entropy method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    2. Dirk P. Kroese & Sergey Porotsky & Reuven Y. Rubinstein, 2006. "The Cross-Entropy Method for Continuous Multi-Extremal Optimization," Methodology and Computing in Applied Probability, Springer, vol. 8(3), pages 383-407, September.
    3. K.-P. Hui & N. Bean & M. Kraetzl & Dirk Kroese, 2005. "The Cross-Entropy Method for Network Reliability Estimation," Annals of Operations Research, Springer, vol. 134(1), pages 101-118, February.
    4. Fahimnia, Behnam & Sarkis, Joseph & Eshragh, Ali, 2015. "A tradeoff model for green supply chain planning:A leanness-versus-greenness analysis," Omega, Elsevier, vol. 54(C), pages 173-190.
    5. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2022. "An automated prior robustness analysis in Bayesian model comparison," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 583-602, April.
    6. Vladimir Ejov & Jerzy A. Filar & Michael Haythorpe & Giang T. Nguyen, 2009. "Refined MDP-Based Branch-and-Fix Algorithm for the Hamiltonian Cycle Problem," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 758-768, August.
    7. Vivek Borkar & Jerzy Filar, 2013. "Markov chains, Hamiltonian cycles and volumes of convex bodies," Journal of Global Optimization, Springer, vol. 55(3), pages 633-639, March.
    8. Ali Eshragh & Jerzy Filar, 2011. "Hamiltonian Cycles, Random Walks, and Discounted Occupational Measures," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 258-270, May.
    9. Qun Niu & Ming You & Zhile Yang & Yang Zhang, 2021. "Economic Emission Dispatch Considering Renewable Energy Resources—A Multi-Objective Cross Entropy Optimization Approach," Sustainability, MDPI, vol. 13(10), pages 1-33, May.
    10. J Morio & R Pastel, 2012. "Plug-in estimation of d-dimensional density minimum volume set of a rare event in a complex system," Journal of Risk and Reliability, , vol. 226(3), pages 337-345, June.
    11. Ali Eshragh & Jerzy A. Filar & Thomas Kalinowski & Sogol Mohammadian, 2020. "Hamiltonian Cycles and Subsets of Discounted Occupational Measures," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 713-731, May.
    12. Agbeyegbe, Terence D., 2020. "Bayesian analysis of output gap in Barbados," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    13. Chan, Joshua C.C., 2023. "Comparing stochastic volatility specifications for large Bayesian VARs," Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
    14. Nelly Litvak & Vladimir Ejov, 2009. "Markov Chains and Optimality of the Hamiltonian Cycle," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 71-82, February.
    15. Benham, Tim & Duan, Qibin & Kroese, Dirk P. & Liquet, Benoît, 2017. "CEoptim: Cross-Entropy R Package for Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i08).
    16. Youngjun Choe & Henry Lam & Eunshin Byon, 2018. "Uncertainty Quantification of Stochastic Simulation for Black-box Computer Experiments," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1155-1172, December.
    17. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    18. Ad Ridder, 2004. "Importance Sampling Simulations of Markovian Reliability Systems using Cross Entropy," Tinbergen Institute Discussion Papers 04-018/4, Tinbergen Institute.
    19. Masoud Esmaeilikia & Behnam Fahimnia & Joeseph Sarkis & Kannan Govindan & Arun Kumar & John Mo, 2016. "A tactical supply chain planning model with multiple flexibility options: an empirical evaluation," Annals of Operations Research, Springer, vol. 244(2), pages 429-454, September.
    20. Fahimnia, Behnam & Sarkis, Joseph & Choudhary, Alok & Eshragh, Ali, 2015. "Tactical supply chain planning under a carbon tax policy scheme: A case study," International Journal of Production Economics, Elsevier, vol. 164(C), pages 206-215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:189:y:2011:i:1:p:103-125:10.1007/s10479-009-0565-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.