IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v26y2021i1d10.1007_s13253-020-00413-3.html
   My bibliography  Save this article

Spatial Sampling Design Using Generalized Neyman–Scott Process

Author

Listed:
  • Sze Him Leung

    (Chinese University of Hong Kong)

  • Ji Meng Loh

    (New Jersey Institute of Technology)

  • Chun Yip Yau

    (Chinese University of Hong Kong)

  • Zhengyuan Zhu

    (Iowa State University)

Abstract

In this paper we introduce a new procedure for spatial sampling design. It is found in previous studies (Zhu and Stein in J Agric Biol Environ Stat 11:24–44, 2006) that the optimal sampling design for spatial prediction with estimated parameters is nearly regular with a few clustered points. The pattern is similar to a generalization of the Neyman–Scott (GNS) process (Yau and Loh in Statistica Sinica 22:1717–1736, 2012) which allows for regularity in the parent process. This motivates the use of a realization of the GNS process as sampling design points. This method translates the high-dimensional optimization problem of selecting sampling sites into a low-dimensional optimization problem of searching for the optimal parameter sets in the GNS process. Simulation studies indicate that the proposed sampling design algorithm is more computationally efficient than traditional methods while achieving similar minimization of the criterion functions. While the traditional methods become computationally infeasible for sample size larger than a hundred, the proposed algorithm is applicable to a size as large as $$n=1024$$ n = 1024 . A real data example of finding the optimal spatial design for predicting sea surface temperature in the Pacific Ocean is also considered.

Suggested Citation

  • Sze Him Leung & Ji Meng Loh & Chun Yip Yau & Zhengyuan Zhu, 2021. "Spatial Sampling Design Using Generalized Neyman–Scott Process," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 105-127, March.
  • Handle: RePEc:spr:jagbes:v:26:y:2021:i:1:d:10.1007_s13253-020-00413-3
    DOI: 10.1007/s13253-020-00413-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-020-00413-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-020-00413-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reuven Rubinstein, 1999. "The Cross-Entropy Method for Combinatorial and Continuous Optimization," Methodology and Computing in Applied Probability, Springer, vol. 1(2), pages 127-190, September.
    2. Rubinstein, Reuven Y., 1997. "Optimization of computer simulation models with rare events," European Journal of Operational Research, Elsevier, vol. 99(1), pages 89-112, May.
    3. Su, Yingcai & Cambanis, Stamatis, 1993. "Sampling designs for estimation of a random process," Stochastic Processes and their Applications, Elsevier, vol. 46(1), pages 47-89, May.
    4. Michael Chipeta & Dianne Terlouw & Kamija Phiri & Peter Diggle, 2017. "Inhibitory geostatistical designs for spatial prediction taking account of uncertain covariance structure," Environmetrics, John Wiley & Sons, Ltd., vol. 28(1), February.
    5. Benham, Tim & Duan, Qibin & Kroese, Dirk P. & Liquet, Benoît, 2017. "CEoptim: Cross-Entropy R Package for Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i08).
    6. M. N. M. van Lieshout & A. J. Baddeley, 1996. "A nonparametric measure of spatial interaction in point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 50(3), pages 344-361, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    2. K.-P. Hui & N. Bean & M. Kraetzl & Dirk Kroese, 2005. "The Cross-Entropy Method for Network Reliability Estimation," Annals of Operations Research, Springer, vol. 134(1), pages 101-118, February.
    3. Fahimnia, Behnam & Sarkis, Joseph & Eshragh, Ali, 2015. "A tradeoff model for green supply chain planning:A leanness-versus-greenness analysis," Omega, Elsevier, vol. 54(C), pages 173-190.
    4. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2022. "An automated prior robustness analysis in Bayesian model comparison," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 583-602, April.
    5. Ad Ridder, 2004. "Importance Sampling Simulations of Markovian Reliability Systems using Cross Entropy," Tinbergen Institute Discussion Papers 04-018/4, Tinbergen Institute.
    6. Masoud Esmaeilikia & Behnam Fahimnia & Joeseph Sarkis & Kannan Govindan & Arun Kumar & John Mo, 2016. "A tactical supply chain planning model with multiple flexibility options: an empirical evaluation," Annals of Operations Research, Springer, vol. 244(2), pages 429-454, September.
    7. Fahimnia, Behnam & Sarkis, Joseph & Choudhary, Alok & Eshragh, Ali, 2015. "Tactical supply chain planning under a carbon tax policy scheme: A case study," International Journal of Production Economics, Elsevier, vol. 164(C), pages 206-215.
    8. Ali Eshragh & Jerzy Filar & Michael Haythorpe, 2011. "A hybrid simulation-optimization algorithm for the Hamiltonian cycle problem," Annals of Operations Research, Springer, vol. 189(1), pages 103-125, September.
    9. M. Bayat & F. Hooshmand & S. A. MirHassani, 2024. "Scenario-based stochastic model and efficient cross-entropy algorithm for the risk-budgeting problem," Annals of Operations Research, Springer, vol. 341(2), pages 731-755, October.
    10. Joshua Chan & Eric Eisenstat & Xuewen Yu, 2022. "Large Bayesian VARs with Factor Stochastic Volatility: Identification, Order Invariance and Structural Analysis," Papers 2207.03988, arXiv.org.
    11. Qun Niu & Ming You & Zhile Yang & Yang Zhang, 2021. "Economic Emission Dispatch Considering Renewable Energy Resources—A Multi-Objective Cross Entropy Optimization Approach," Sustainability, MDPI, vol. 13(10), pages 1-33, May.
    12. L. Margolin, 2005. "On the Convergence of the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 201-214, February.
    13. J Morio & R Pastel, 2012. "Plug-in estimation of d-dimensional density minimum volume set of a rare event in a complex system," Journal of Risk and Reliability, , vol. 226(3), pages 337-345, June.
    14. Morio, Jérôme, 2011. "Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 178-183.
    15. Nguyen, Hoa T.M. & Chow, Andy H.F. & Ying, Cheng-shuo, 2021. "Pareto routing and scheduling of dynamic urban rail transit services with multi-objective cross entropy method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    16. Shi Yang & Shi Weiping & Wang Mengqiao & Lee Ji-Hyun & Kang Huining & Jiang Hui, 2023. "Accurate and fast small p-value estimation for permutation tests in high-throughput genomic data analysis with the cross-entropy method," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 22(1), pages 1-22, January.
    17. Hao Su & Qun Niu & Zhile Yang, 2023. "Optimal Power Flow Using Improved Cross-Entropy Method," Energies, MDPI, vol. 16(14), pages 1-33, July.
    18. Agbeyegbe, Terence D., 2020. "Bayesian analysis of output gap in Barbados," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    19. Chan, Joshua C.C., 2023. "Comparing stochastic volatility specifications for large Bayesian VARs," Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
    20. Benham, Tim & Duan, Qibin & Kroese, Dirk P. & Liquet, Benoît, 2017. "CEoptim: Cross-Entropy R Package for Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i08).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:26:y:2021:i:1:d:10.1007_s13253-020-00413-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.