IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i5p922-926.html
   My bibliography  Save this article

Analyzing the effect of introducing a kurtosis parameter in Gaussian Bayesian networks

Author

Listed:
  • Main, P.
  • Navarro, H.

Abstract

Gaussian Bayesian networks are graphical models that represent the dependence structure of a multivariate normal random variable with a directed acyclic graph (DAG). In Gaussian Bayesian networks the output is usually the conditional distribution of some unknown variables of interest given a set of evidential nodes whose values are known. The problem of uncertainty about the assumption of normality is very common in applications. Thus a sensitivity analysis of the non-normality effect in our conclusions could be necessary. The aspect of non-normality to be considered is the tail behavior. In this line, the multivariate exponential power distribution is a family depending on a kurtosis parameter that goes from a leptokurtic to a platykurtic distribution with the normal as a mesokurtic distribution. Therefore a more general model can be considered using the multivariate exponential power distribution to describe the joint distribution of a Bayesian network, with a kurtosis parameter reflecting deviations from the normal distribution. The sensitivity of the conclusions to this perturbation is analyzed using the Kullback–Leibler divergence measure that provides an interesting formula to evaluate the effect.

Suggested Citation

  • Main, P. & Navarro, H., 2009. "Analyzing the effect of introducing a kurtosis parameter in Gaussian Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 922-926.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:5:p:922-926
    DOI: 10.1016/j.ress.2008.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008002548
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Batchelor, Charles & Cain, Jeremy, 1999. "Application of belief networks to water management studies," Agricultural Water Management, Elsevier, vol. 40(1), pages 51-57, March.
    2. Langseth, Helge & Portinale, Luigi, 2007. "Bayesian networks in reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 92-108.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Pagano & Raffaele Giordano & Ivan Portoghese & Umberto Fratino & Michele Vurro, 2014. "A Bayesian vulnerability assessment tool for drinking water mains under extreme events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2193-2227, December.
    2. Rogerson, Ellen C. & Lambert, James H., 2012. "Prioritizing risks via several expert perspectives with application to runway safety," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 22-34.
    3. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    4. Marquez, David & Neil, Martin & Fenton, Norman, 2010. "Improved reliability modeling using Bayesian networks and dynamic discretization," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 412-425.
    5. George-Williams, Hindolo & Patelli, Edoardo, 2017. "Efficient availability assessment of reconfigurable multi-state systems with interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 431-444.
    6. Vimal Vijayan & Sanjay K Chaturvedi & Ritesh Chandra, 2020. "A failure interaction model for multicomponent repairable systems," Journal of Risk and Reliability, , vol. 234(3), pages 470-486, June.
    7. Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
    8. Iamsumang, Chonlagarn & Mosleh, Ali & Modarres, Mohammad, 2018. "Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 118-129.
    9. Penttinen, Jussi-Pekka & Niemi, Arto & Gutleber, Johannes & Koskinen, Kari T. & Coatanéa, Eric & Laitinen, Jouko, 2019. "An open modelling approach for availability and reliability of systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 387-399.
    10. Zhong, Shengtong & Langseth, Helge & Nielsen, Thomas Dyhre, 2014. "A classification-based approach to monitoring the safety of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 61-71.
    11. Bandeira, Michelle Carvalho Galvão Silva Pinto & Correia, Anderson Ribeiro & Martins, Marcelo Ramos, 2018. "General model analysis of aeronautical accidents involving human and organizational factors," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 137-146.
    12. El-Awady, Ahmed & Ponnambalam, Kumaraswamy, 2021. "Integration of simulation and Markov Chains to support Bayesian Networks for probabilistic failure analysis of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    13. Morales-Nápoles, Oswaldo & Steenbergen, Raphaël D.J.M., 2014. "Analysis of axle and vehicle load properties through Bayesian Networks based on Weigh-in-Motion data," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 153-164.
    14. Yontay, Petek & Pan, Rong, 2016. "A computational Bayesian approach to dependency assessment in system reliability," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 104-114.
    15. A Léger & P Weber & E Levrat & C Duval & R Farret & B Iung, 2009. "Methodological developments for probabilistic risk analyses of socio-technical systems," Journal of Risk and Reliability, , vol. 223(4), pages 313-332, December.
    16. Zhou, Ying & Li, Chenshuang & Zhou, Cheng & Luo, Hanbin, 2018. "Using Bayesian network for safety risk analysis of diaphragm wall deflection based on field data," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 152-167.
    17. Andrews, John & Fecarotti, Claudia, 2017. "System design and maintenance modelling for safety in extended life operation," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 95-108.
    18. Limao Zhang & Xianguo Wu & Yawei Qin & Miroslaw J. Skibniewski & Wenli Liu, 2016. "Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel‐Induced Pipeline Damage," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 278-301, February.
    19. Codetta-Raiteri, Daniele & Portinale, Luigi, 2017. "Generalized Continuous Time Bayesian Networks as a modelling and analysis formalism for dependable systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 639-651.
    20. Amrin, Andas & Zarikas, Vasileios & Spitas, Christos, 2018. "Reliability analysis and functional design using Bayesian networks generated automatically by an “Idea Algebra†framework," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 211-225.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:5:p:922-926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.