IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i3p699-721.html
   My bibliography  Save this article

Computational implementation of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada

Author

Listed:
  • Helton, Jon C.
  • Sallaberry, Cedric J.

Abstract

A deep geologic repository for high-level radioactive waste is under development by the US Department of Energy (DOE) at Yucca Mountain (YM), Nevada. As mandated in the Energy Policy Act of 1992, the US Environmental Protection has promulgated public health and safety standards (i.e., 40 CFR Part 197) for the YM repository, and the US Nuclear Regulatory Commission has promulgated licensing standards (i.e., 10 CFR Parts 2, 19, 20, etc.) consistent with 40 CFR Part 197 that the DOE must establish are met in order for the YM repository to be licensed for operation. Important requirements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. relate to the determination of expected (i.e., mean) dose to a reasonably maximally exposed individual (RMEI) and the incorporation of uncertainty into this determination. This paper is the second part of a two-part presentation on the determination of expected dose to the RMEI in the context of 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. The first part of this presentation is contained in the preceding paper, “Conceptual Basis for the Definition and Calculation of Expected Dose in Performance Assessments for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada†, and describes how general and typically nonquantitative statements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. can be given a formal mathematical structure that facilitates both the calculation of expected dose to the RMEI and the appropriate separation in this calculation of aleatory uncertainty (i.e., randomness in the properties of future occurrences such as igneous and seismic events) and epistemic uncertainty (i.e., lack of knowledge about quantities that are poorly known but assumed to have constant values in the calculation of expected dose to the RMEI). The present paper describes and illustrates sampling-based procedures for the estimation of expected dose and the determination of the uncertainty in estimates for expected dose.

Suggested Citation

  • Helton, Jon C. & Sallaberry, Cedric J., 2009. "Computational implementation of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nev," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 699-721.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:3:p:699-721
    DOI: 10.1016/j.ress.2008.06.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008001865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.06.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perwez Shahabuddin, 1994. "Importance Sampling for the Simulation of Highly Reliable Markovian Systems," Management Science, INFORMS, vol. 40(3), pages 333-352, March.
    2. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    3. Peter W. Glynn & Donald L. Iglehart, 1989. "Importance Sampling for Stochastic Simulations," Management Science, INFORMS, vol. 35(11), pages 1367-1392, November.
    4. Evans, Michael & Swartz, Timothy, 2000. "Approximating Integrals via Monte Carlo and Deterministic Methods," OUP Catalogue, Oxford University Press, number 9780198502784.
    5. Trucano, T.G. & Swiler, L.P. & Igusa, T. & Oberkampf, W.L. & Pilch, M., 2006. "Calibration, validation, and sensitivity analysis: What's what," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1331-1357.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cadini, F. & De Sanctis, J. & Girotti, T. & Zio, E. & Luce, A. & Taglioni, A., 2010. "Monte Carlo-based assessment of the safety performance of a radioactive waste repository," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 859-865.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Elmar Plischke & Emanuele Borgonovo, 2020. "Fighting the Curse of Sparsity: Probabilistic Sensitivity Measures From Cumulative Distribution Functions," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2639-2660, December.
    4. Helton, J.C. & Hansen, C.W. & Sallaberry, C.J., 2014. "Conceptual structure and computational organization of the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 223-248.
    5. Helton, Jon C. & Hansen, Clifford W. & Sallaberry, Cédric J., 2012. "Uncertainty and sensitivity analysis in performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 44-63.
    6. Pilch, Martin & Trucano, Timothy G. & Helton, Jon C., 2011. "Ideas underlying the Quantification of Margins and Uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 965-975.
    7. Blatman, Géraud & Sudret, Bruno, 2010. "Efficient computation of global sensitivity indices using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1216-1229.
    8. Tosoni, E. & Salo, A. & Govaerts, J. & Zio, E., 2019. "Comprehensiveness of scenarios in the safety assessment of nuclear waste repositories," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 561-573.
    9. Edoardo Tosoni & Ahti Salo & Enrico Zio, 2018. "Scenario Analysis for the Safety Assessment of Nuclear Waste Repositories: A Critical Review," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 755-776, April.
    10. Zio, E. & Pedroni, N., 2010. "An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1300-1313.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2007. "Verification test problems for the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1374-1387.
    2. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2006. "Probability of loss of assured safety in temperature dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 91(3), pages 320-348.
    3. Helton, Jon C. & Pilch, Martin & Sallaberry, Cédric J., 2014. "Probability of loss of assured safety in systems with multiple time-dependent failure modes: Representations with aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 171-200.
    4. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    5. Helton, J.C. & Hansen, C.W. & Sallaberry, C.J., 2014. "Conceptual structure and computational organization of the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 223-248.
    6. Pierre L’Ecuyer & Bruno Tuffin, 2011. "Approximating zero-variance importance sampling in a reliability setting," Annals of Operations Research, Springer, vol. 189(1), pages 277-297, September.
    7. Sandeep Juneja & Perwez Shahabuddin, 2001. "Fast Simulation of Markov Chains with Small Transition Probabilities," Management Science, INFORMS, vol. 47(4), pages 547-562, April.
    8. Kaynar, Bahar & Ridder, Ad, 2010. "The cross-entropy method with patching for rare-event simulation of large Markov chains," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1380-1397, December.
    9. Fonoberova, Maria & Fonoberov, Vladimir A. & Mezić, Igor, 2013. "Global sensitivity/uncertainty analysis for agent-based models," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 8-17.
    10. Barry L. Nelson, 2004. "50th Anniversary Article: Stochastic Simulation Research in Management Science," Management Science, INFORMS, vol. 50(7), pages 855-868, July.
    11. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2007. "Verification of the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1363-1373.
    12. Helton, Jon C., 2011. "Quantification of margins and uncertainties: Conceptual and computational basis," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 976-1013.
    13. Kuruganti, I. & Strickland, S., 1997. "Optimal importance sampling for Markovian systems with applications to tandem queues," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 44(1), pages 61-79.
    14. Hernan P. Awad & Peter W. Glynn & Reuven Y. Rubinstein, 2013. "Zero-Variance Importance Sampling Estimators for Markov Process Expectations," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 358-388, May.
    15. Nam Kyoo Boots & Perwez Shahabuddin, 2001. "Simulating Tail Probabilities in GI/GI.1 Queues and Insurance Risk Processes with Subexponentail Distributions," Tinbergen Institute Discussion Papers 01-012/4, Tinbergen Institute.
    16. Pilch, Martin & Trucano, Timothy G. & Helton, Jon C., 2011. "Ideas underlying the Quantification of Margins and Uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 965-975.
    17. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    18. Philippe Jehiel & Jakub Steiner, 2020. "Selective Sampling with Information-Storage Constraints [On interim rationality, belief formation and learning in decision problems with bounded memory]," The Economic Journal, Royal Economic Society, vol. 130(630), pages 1753-1781.
    19. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    20. Helton, Jon C. & Johnson, Jay D. & Sallaberry, Cédric J., 2011. "Quantification of margins and uncertainties: Example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1014-1033.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:3:p:699-721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.