IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i2p520-525.html
   My bibliography  Save this article

Architectural constraints in IEC 61508: Do they have the intended effect?

Author

Listed:
  • Lundteigen, Mary Ann
  • Rausand, Marvin

Abstract

The standards IEC 61508 and IEC 61511 employ architectural constraints to avoid that quantitative assessments alone are used to determine the hardware layout of safety instrumented systems (SIS). This article discusses the role of the architectural constraints, and particularly the safe failure fraction (SFF) as a design parameter to determine the hardware fault tolerance (HFT) and the redundancy level for SIS. The discussion is based on examples from the offshore oil and gas industry, but should be relevant for all applications of SIS. The article concludes that architectural constraints may be required to compensate for systematic failures, but the architectural constraints should not be determined based on the SFF. The SFF is considered to be an unnecessary concept.

Suggested Citation

  • Lundteigen, Mary Ann & Rausand, Marvin, 2009. "Architectural constraints in IEC 61508: Do they have the intended effect?," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 520-525.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:520-525
    DOI: 10.1016/j.ress.2008.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008001774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lundteigen, Mary Ann & Rausand, Marvin, 2008. "Spurious activation of safety instrumented systems in the oil and gas industry: Basic concepts and formulas," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1208-1217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lundteigen, Mary Ann & Rausand, Marvin & Utne, Ingrid Bouwer, 2009. "Integrating RAMS engineering and management with the safety life cycle of IEC 61508," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1894-1903.
    2. Mechri, Walid & Simon, Christophe & BenOthman, Kamel, 2015. "Switching Markov chains for a holistic modeling of SIS unavailability," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 212-222.
    3. Florent Brissaud & Anne Barros & Christophe Bérenguer, 2012. "Probability of failure on demand of safety systems: impact of partial test distribution," Journal of Risk and Reliability, , vol. 226(4), pages 426-436, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Meng & Kan, Yufeng & Li, Xun & Wang, Xiaoying & Zhao, Dongfeng & Moon, Il, 2020. "Spurious activation and operational integrity evaluation of redundant safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    2. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    3. Lundteigen, Mary Ann & Rausand, Marvin & Utne, Ingrid Bouwer, 2009. "Integrating RAMS engineering and management with the safety life cycle of IEC 61508," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1894-1903.
    4. Longhi, Antonio Eduardo Bier & Pessoa, Artur Alves & Garcia, Pauli Adriano de Almada, 2015. "Multiobjective optimization of strategies for operation and testing of low-demand safety instrumented systems using a genetic algorithm and fault trees," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 525-538.
    5. Innal, Fares & Lundteigen, Mary Ann & Liu, Yiliu & Barros, Anne, 2016. "PFDavg generalized formulas for SIS subject to partial and full periodic tests based on multi-phase Markov models," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 160-170.
    6. Wu, Shengnan & Zhang, Laibin & Zheng, Wenpei & Liu, Yiliu & Lundteigen, Mary Ann, 2019. "Reliability modeling of subsea SISs partial testing subject to delayed restoration," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Modelling and optimization of proof testing policies for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 838-854.
    8. Jin, Hui & Lundteigen, Mary Ann & Rausand, Marvin, 2011. "Reliability performance of safety instrumented systems: A common approach for both low- and high-demand mode of operation," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 365-373.
    9. Azizpour, Hooshyar & Lundteigen, Mary Ann, 2019. "Analysis of simplification in Markov-based models for performance assessment of Safety Instrumented System," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 252-260.
    10. Fu, Jianmin & Li, Honghao & Chi, Yajuan & Zhen, Jia & Xu, Xiangfeng, 2021. "nSIL Evaluation and Sensitivity Study of Diverse Redundant Structure," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    11. Innal, Fares & Dutuit, Yves & Chebila, Mourad, 2015. "Safety and operational integrity evaluation and design optimization of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 32-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:520-525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.