IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v91y2006i9p1039-1048.html
   My bibliography  Save this article

Optimizing the product-based availability of a buffered industrial process

Author

Listed:
  • Hamada, Michael
  • Martz, Harry F.
  • Berg, Eric C.
  • Koehler, Arthur J.

Abstract

Many industrial processes for discrete consumable products consist of a series (or set) of sequential process operations (or subsystems) which are de-coupled by means of in-process storage buffers. Each subsystem of such a process contains one or more parallel coupled or uncoupled operating lanes. We describe the use of a discrete-event simulation model for determining the availability of such a process. We likewise define and use a genetic algorithm to determine process designs and operating rules that have high availability. A 65-variable example, consisting of four operating subsystems with at most four lanes per subsystem, is used to illustrate the method. The results for this and similar real-world applications indicate that, by applying this methodology, it is possible to design buffered industrial processes having high availability.

Suggested Citation

  • Hamada, Michael & Martz, Harry F. & Berg, Eric C. & Koehler, Arthur J., 2006. "Optimizing the product-based availability of a buffered industrial process," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1039-1048.
  • Handle: RePEc:eee:reensy:v:91:y:2006:i:9:p:1039-1048
    DOI: 10.1016/j.ress.2005.11.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832005002048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2005.11.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levitin, G. & Meizin, L., 2001. "Structure optimization for continuous production systems with buffers under reliability constraints," International Journal of Production Economics, Elsevier, vol. 70(1), pages 77-87, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimizing corrective maintenance for multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Consecutively connected systems with unreliable resource generators and storages," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Minimizing mission cost for production system with unreliable storage," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    4. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Unrepairable system with single production unit and n failure-prone identical parallel storage units," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Zhou, Yifan & Guo, Yiming & Lin, Tian Ran & Ma, Lin, 2018. "Maintenance optimisation of a series production system with intermediate buffers using a multi-agent FMDP," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 39-48.
    6. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal sequencing of elements activation in 1-out-of-n warm standby system with storage," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimizing uploading and downloading pace distribution in system with two non-identical storage units," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Olga Fink & Enrico Zio, 2013. "Semi-Markov processes with semi-regenerative states for the availability analysis of chemical process plants with storage units," Journal of Risk and Reliability, , vol. 227(3), pages 279-289, June.
    9. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Loading policy minimizing cumulative unsupplied demand of production system with storage," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    10. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimizing the maximum filling level of perfect storage in system with imperfect production unit," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Unrepairable system with consecutively used imperfect storage units," Reliability Engineering and System Safety, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhiwei & Zhang, Hao & Wang, Xinyue & Yang, Jinling & Dui, Hongyan, 2024. "Reliability analysis and redundancy design of satellite communication system based on a novel Bayesian environmental importance," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Fitouhi, Mohamed-Chahir & Nourelfath, Mustapha & Gershwin, Stanley B., 2017. "Performance evaluation of a two-machine line with a finite buffer and condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 61-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:91:y:2006:i:9:p:1039-1048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.