IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024005921.html
   My bibliography  Save this article

Stochastic two-stage multi-objective unit commitment of distributed resource energy systems considering uncertainties and unit failures

Author

Listed:
  • Liu, Jingfan
  • Zhang, Shijie

Abstract

Compared to centralized generation technology, distributed energy resource systems are susceptible to energy risks caused by boundary uncertainties and unit failures. This study introduces a stochastic two-stage multi-objective optimization method to address reliability-based unit commitment issues. In the day-ahead stage, operational state and reserve capacity are determined to minimize prescheduled operation costs based on forecasted parameters. In the real-time stage, a decision-dependent stochastic reliability method is proposed to simulate outage scenarios. Reserve resources within available units are allocated to mitigate forecasting errors and unit failures. Additionally, the grid interaction ratio and penalty cost are added to restrict the depth and frequency access to the grid. Four comparative cases analyze the effects of the proposed methodology. This method innovatively achieves the simulation of stochastic multi-unit outages and delete faulty units in the operation scheme. The optimal results show that the risks of electricity and cooling supply are underestimated, while the risks of heating are overestimated, compared to N-1 reliability. Furthermore, Pareto analysis of the multi-objective problem enhances independent operational capacity through utilization of reserve resources. Grid dispatch pressure is reduced since purchased power can be used as day-ahead planning. Thus, the methodology achieves collaborative optimization of reliability with a reduction of operation costs, offering effective guidance for engineering applications.

Suggested Citation

  • Liu, Jingfan & Zhang, Shijie, 2025. "Stochastic two-stage multi-objective unit commitment of distributed resource energy systems considering uncertainties and unit failures," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005921
    DOI: 10.1016/j.ress.2024.110520
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005921
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.