IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics0951832024005246.html
   My bibliography  Save this article

Forecasting road network functionality states during extreme rainfall events to facilitate real-time emergency response planning

Author

Listed:
  • Wang, Junyan
  • Wang, Naiyu

Abstract

Rapid prediction of Road Network Functionality (RNF) during extreme rainfall-induced flooding is crucial for supporting proactive and real-time emergency planning, such as rescue, evacuation planning, and emergency supply distribution. Unlike normal operational conditions, extreme rainfall events introduce complex non-stationary, non-Euclidean characteristics to RNF due to intricate meteorological and hydrological processes, as well as the role of a community's road network in emergency response planning. Conventional physics-based flood simulations and flow-based road network analyses typically lack the computational efficiency required for real-time RNF predictions, hindering timely risk mitigation decisions. This study leverages the accuracy of physics-based simulations and the efficacy of deep-learning technologies to develop a deep learning-based surrogate model for Rain-to-RNF (R2R) predictions. This model couples Long Short-Term Memory (LSTM) networks with Spatial-Temporal Graph Convolutional Networks (ST-GCNs) to uniquely capture the spatiotemporal dynamics of RNF under extreme rainfall events. The predictive accuracy, stability, and versatility of the R2R surrogate model are demonstrated in four flood-prone communities in Zhejiang Province. Its implementation during Typhoon Fitow (2013) over a 30-hour intense rainfall showcases its promising predictive capacity and unparalleled computational efficiency. This research advances disaster management, enhancing the resilience and responsiveness of community infrastructure during extreme weather events.

Suggested Citation

  • Wang, Junyan & Wang, Naiyu, 2024. "Forecasting road network functionality states during extreme rainfall events to facilitate real-time emergency response planning," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005246
    DOI: 10.1016/j.ress.2024.110452
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.