IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v654y2024ics0378437124006630.html
   My bibliography  Save this article

Assessing movement-specific resilience of a signalized road network under lane-level cascading failure

Author

Listed:
  • Chen, Guizhen
  • Van Woensel, Tom
  • Xu, Jinhua
  • Luo, Yikai
  • Li, Yan

Abstract

Accurately assessing the resilience of the road network is crucial for responding to emergencies and enhancing public safety. Signal control plays a significant role in managing traffic flow. However, its impact is often overlooked in resilience assessments, where traffic flow and signal control are usually considered separately. A Movement-Specific Resilience (MSR) assessment model is proposed to integrate signal timing into resilience analysis. To accurately represent traffic flow paths under phase control, a dual graph is used to depict the topological network, allowing the assessment of relationships among all movements at an intersection. Based on this, a cascading failure model is developed to analyze the impact of signal control on traffic flow reassignment, reflecting how signal timing influences traffic flow propagation after failures. The method is validated using data collected from a sub-road network in Xi’an city. Results reveal the cumulative resilience of single lanes is not equivalent to the resilience of road segments. The MSR is higher when the network’s failure degree is low and decreases as the failure level increases. Furthermore, road saturation is inversely related to MSR, while MSR is proportional to capacity. MSR remains unaffected by failures and oversaturation when capacity exceeds a certain threshold. These insights could be a theoretical foundation for bolstering resilience via signal control adjustments.

Suggested Citation

  • Chen, Guizhen & Van Woensel, Tom & Xu, Jinhua & Luo, Yikai & Li, Yan, 2024. "Assessing movement-specific resilience of a signalized road network under lane-level cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
  • Handle: RePEc:eee:phsmap:v:654:y:2024:i:c:s0378437124006630
    DOI: 10.1016/j.physa.2024.130154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124006630
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:654:y:2024:i:c:s0378437124006630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.