IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v214y2021ics0951832021002763.html
   My bibliography  Save this article

Quantitative representation of the functional resonance analysis method for risk assessment

Author

Listed:
  • Kim, Yoo Chan
  • Yoon, Wan Chul

Abstract

Resilience engineering understands that risks are emergent from the complexity of socio-technical systems. In this perspective, the risk assessment needs to analyze possibilities of potential risks emerging from system variabilities and interactions under hypothetical scenarios. While the Functional Resonance Analysis Method (FRAM) is a well-established method for analyzing system behavior in terms of variability, assessing relative risk levels requires more specific representation and handling of the quantitative aspects of variabilities to allow for comparative analysis and decision-making. This study proposed and examined a quantitative scheme to use FRAM for risk assessment by defining rules for variability propagation and aggregation. The proposed method represents the system more realistically with quantitative values, taking into account interactions and the adaptive operation of functions. The approach was tested via a walk-through application to an emergency response system for infectious disease. Three progressive scenarios are used in relation to managing crisis response for the 2019 coronavirus pandemic (COVID-19), and the results demonstrate the usefulness of the proposed method for assessing the relative importance of potential risks and critical conditions. Although the test example focused on a disease containment case, the proposed method can generally support strategic decision making during the governance of large-scale crisis response.

Suggested Citation

  • Kim, Yoo Chan & Yoon, Wan Chul, 2021. "Quantitative representation of the functional resonance analysis method for risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:reensy:v:214:y:2021:i:c:s0951832021002763
    DOI: 10.1016/j.ress.2021.107745
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021002763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patriarca, Riccardo & Bergström, Johan & Di Gravio, Giulio, 2017. "Defining the functional resonance analysis space: Combining Abstraction Hierarchy and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 34-46.
    2. George E. Apostolakis, 2004. "How Useful Is Quantitative Risk Assessment?," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 515-520, June.
    3. Herrera, I.A. & Woltjer, R., 2010. "Comparing a multi-linear (STEP) and systemic (FRAM) method for accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1269-1275.
    4. Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Hao & Yang, Ming & Wang, Haiqing, 2024. "An integrated approach to quantitative resilience assessment in process systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Mahdieh Delikhoon & Esmaeil Zarei & Osiris Valdez Banda & Mohammad Faridan & Ehsanollah Habibi, 2022. "Systems Thinking Accident Analysis Models: A Systematic Review for Sustainable Safety Management," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    3. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Zhou, Zhengshu & Matsubara, Yutaka & Takada, Hiroaki, 2023. "Resilience analysis and design for mobility-as-a-service based on enterprise architecture modeling," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Li, Jue & Wang, Hongwei, 2023. "Modeling and analyzing multiteam coordination task safety risks in socio-technical systems based on FRAM and multiplex network: Application in the construction industry," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    2. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Steen, Riana & Ferreira, Pedro, 2020. "Resilient flood-risk management at the municipal level through the lens of the Functional Resonance Analysis Model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Isadora Antoniano‐Villalobos & Emanuele Borgonovo & Sumeda Siriwardena, 2018. "Which Parameters Are Important? Differential Importance Under Uncertainty," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2459-2477, November.
    5. Li, Weijun & He, Min & Sun, Yibo & Cao, Qinggui, 2019. "A proactive operational risk identification and analysis framework based on the integration of ACAT and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 101-109.
    6. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    7. Aven, Terje & Renn, Ortwin, 2018. "Improving government policy on risk: Eight key principles," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 230-241.
    8. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    9. Terje Aven, 2018. "An Emerging New Risk Analysis Science: Foundations and Implications," Risk Analysis, John Wiley & Sons, vol. 38(5), pages 876-888, May.
    10. repec:arp:tjssrr:2019:p:69-75 is not listed on IDEAS
    11. Mussard, Stéphane & Pi Alperin, María Noel, 2021. "Accounting for risk factors on health outcomes: The case of Luxembourg," European Journal of Operational Research, Elsevier, vol. 291(3), pages 1180-1197.
    12. George E. Apostolakis & Douglas M. Lemon, 2005. "A Screening Methodology for the Identification and Ranking of Infrastructure Vulnerabilities Due to Terrorism," Risk Analysis, John Wiley & Sons, vol. 25(2), pages 361-376, April.
    13. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    14. Tasneem Bani-Mustafa & Nicola Pedroni & Enrico Zio & Dominique Vasseur & Francois Beaudouin, 2020. "A hierarchical tree-based decision-making approach for assessing the relative trustworthiness of risk assessment models," Journal of Risk and Reliability, , vol. 234(6), pages 748-763, December.
    15. Heiner Ackermann & Erik Diessel & Michael Helmling & Neil Jami & Johanna Münch, 2024. "Computing Optimal Mitigation Plans for Force-Majeure Scenarios in Dynamic Manufacturing Chains," SN Operations Research Forum, Springer, vol. 5(2), pages 1-35, June.
    16. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    17. Senderov, Sergey M. & Smirnova, Elena M. & Vorobev, Sergey V., 2020. "Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities," Energy, Elsevier, vol. 212(C).
    18. Aigner, Philipp & Schlütter, Sebastian, 2023. "Enhancing gradient capital allocation with orthogonal convexity scenarios," ICIR Working Paper Series 47/23, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
    19. Mangirdas Morkunas & Gintaras Cernius & Gintare Giriuniene, 2019. "Assessing Business Risks of Natural Gas Trading Companies: Evidence from GET Baltic," Energies, MDPI, vol. 12(14), pages 1-14, July.
    20. Luca Allodi & Fabio Massacci, 2017. "Security Events and Vulnerability Data for Cybersecurity Risk Estimation," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1606-1627, August.
    21. Scholz, Roland W. & Czichos, Reiner & Parycek, Peter & Lampoltshammer, Thomas J., 2020. "Organizational vulnerability of digital threats: A first validation of an assessment method," European Journal of Operational Research, Elsevier, vol. 282(2), pages 627-643.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:214:y:2021:i:c:s0951832021002763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.