IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004034.html
   My bibliography  Save this article

An optimized dynamic model improved deep discriminative transfer learning network for fault detection in rotation vector reducers

Author

Listed:
  • Wang, Hui
  • Wang, Shuhui
  • Yang, Ronggang
  • Xiang, Jiawei

Abstract

In recent years, recognized fault types using artificial intelligence (AI) models has gradually become one of the mainstream directions in the field of mechanical fault diagnosis. However, it is very difficult to obtain relatively complete fault samples, which limits the application of AI models for complex mechanical systems, such as rotation vector (RV) reducers. To address this issue, physical model-based fault sample generation methods attracted many attentions but still an open problem: the difference in fault samples between numerical simulation and measurement of a physical system needs to be well decreased. Therefore, this article proposes an improved deep discriminative transfer learning network (IDDTLN) for RV reducer fault diagnosis. The presented network is driven by an optimized dynamic model. Firstly, the measurement normal signal and whale optimization algorithm (WOA) are utilized to update the dynamic model parameters of the RV reducer. Secondly, the updated numerical model is employed to calculate simulation fault samples. Finally, simulation samples and unlabeled measurement fault samples are used to train IDDTLN. The trained IDDTLN can accurately identify the unknow measurement fault samples. The data obtained from RV reducer test rigs are utilized to explore the feasibility of the proposed method, and the classification accuracies reach 99.8 %.

Suggested Citation

  • Wang, Hui & Wang, Shuhui & Yang, Ronggang & Xiang, Jiawei, 2024. "An optimized dynamic model improved deep discriminative transfer learning network for fault detection in rotation vector reducers," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004034
    DOI: 10.1016/j.ress.2024.110331
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Min & Shao, Haidong & Williams, Darren & Lu, Siliang & Shu, Lei & de Silva, Clarence W., 2021. "Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Kumar, Anil & Kumar, Rajesh & Tang, Hesheng & Xiang, Jiawei, 2024. "A comprehensive study on developing an intelligent framework for identification and quantitative evaluation of the bearing defect size," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Wang, Hongwei & Liu, Yaqi & Mu, Zongyi & Xiang, Jiawei & Li, Jian, 2023. "Real-time precision reliability prediction for the worm drive system supported by digital twins," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    4. Zhang, Wei & Wang, Ziwei & Li, Xiang, 2023. "Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Wang, Hui & Zheng, Junkang & Xiang, Jiawei, 2023. "Online bearing fault diagnosis using numerical simulation models and machine learning classifications," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Wang, Jinrui & Zhang, Zongzhen & Liu, Zhiliang & Han, Baokun & Bao, Huaiqian & Ji, Shanshan, 2023. "Digital twin aided adversarial transfer learning method for domain adaptation fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Kumar, Anil & Parkash, Chander & Vashishtha, Govind & Tang, Hesheng & Kundu, Pradeep & Xiang, Jiawei, 2022. "State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zio, Enrico & Miqueles, Leonardo, 2024. "Digital twins in safety analysis, risk assessment and emergency management," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    2. Hu, Kui & He, Qingbo & Cheng, Changming & Peng, Zhike, 2024. "Adaptive incremental diagnosis model for intelligent fault diagnosis with dynamic weight correction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    4. Yan, Shen & Zhong, Xiang & Shao, Haidong & Ming, Yuhang & Liu, Chao & Liu, Bin, 2023. "Digital twin-assisted imbalanced fault diagnosis framework using subdomain adaptive mechanism and margin-aware regularization," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    5. Yan, Shen & Shao, Haidong & Min, Zhishan & Peng, Jiangji & Cai, Baoping & Liu, Bin, 2023. "FGDAE: A new machinery anomaly detection method towards complex operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    6. Zhao, Ke & Hu, Junchen & Shao, Haidong & Hu, Jiabei, 2023. "Federated multi-source domain adversarial adaptation framework for machinery fault diagnosis with data privacy," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    7. Wang, Chenxi & Zhang, Yuxiang & Zhao, Zhibin & Chen, Xuefeng & Hu, Jiawei, 2024. "Dynamic model-assisted transferable network for liquid rocket engine fault diagnosis using limited fault samples," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Yu, Tian & Li, Chaoshun & Huang, Jie & Xiao, Xiangqu & Zhang, Xiaoyuan & Li, Yuhong & Fu, Bitao, 2024. "ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    9. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Wen, Guangrui & Liu, Zimin & Su, Yu & Chen, Xuefeng, 2023. "Hybrid system response model for condition monitoring of bearings under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    11. Tan, Hongchuang & Xie, Suchao & Ma, Wen & Yang, Chengxing & Zheng, Shiwei, 2023. "Correlation feature distribution matching for fault diagnosis of machines," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Li, Yan-Fu & Zhao, Wei & Zhang, Chen & Ye, Jiantao & He, Huiru, 2024. "A study on the prediction of service reliability of wireless telecommunication system via distribution regression," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    13. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Li, Jing, 2022. "Transferable adaptive channel attention module for unsupervised cross-domain fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. Dong, Yutong & Jiang, Hongkai & Wu, Zhenghong & Yang, Qiao & Liu, Yunpeng, 2023. "Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    15. Zhu, Zuanyu & Cheng, Junsheng & Wang, Ping & Wang, Jian & Kang, Xin & Yang, Yu, 2023. "A novel fault diagnosis framework for rotating machinery with hierarchical multiscale symbolic diversity entropy and robust twin hyperdisk-based tensor machine," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    16. Zhang, Zhongwei & Jiao, Zonghao & Li, Youjia & Shao, Mingyu & Dai, Xiangjun, 2024. "Intelligent fault diagnosis of bearings driven by double-level data fusion based on multichannel sample fusion and feature fusion under time-varying speed conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    17. Dai, Menghang & Liu, Zhiliang & Wang, Jinrui & Zuo, Mingjian, 2024. "Physics-driven feature alignment combined with dynamic distribution adaptation for three-cylinder drilling pump cross-speed fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    18. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    19. Wang, Hui & Zheng, Junkang & Xiang, Jiawei, 2023. "Online bearing fault diagnosis using numerical simulation models and machine learning classifications," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. Wang, Chang & Zheng, Jianqin & Liang, Yongtu & Wang, Bohong & Klemeš, Jiří Jaromír & Zhu, Zhu & Liao, Qi, 2022. "Deeppipe: An intelligent monitoring framework for operating condition of multi-product pipelines," Energy, Elsevier, vol. 261(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.