IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v249y2024ics095183202400276x.html
   My bibliography  Save this article

Pareto-based design optimization of chemical tank farm using a trade-off between domino effects related and land resource utilization efficiency

Author

Listed:
  • Men, Jinkun
  • Chen, Guohua
  • Reniers, Genserik

Abstract

Industrial production intensification greatly enhances resource utilization efficiency and production efficiency within the modern petrochemical industry (MPI). However, densely located hazardous installations pose significant threats to workers, society and environment. Under this impetus, an advanced pareto-based optimization methodology is proposed for chemical tank farm (CTF) design. The objectives of domino risk minimization and land resource utilization efficiency maximization can be achieved through optimizing the locations and dimensions of storage tanks. A simplified quantitative domino risk assessment procedure is developed within a grid-based Cartesian coordinate system, which links the design parameters and risk values. A bi-objective optimization model is developed for problem formulation and a well-designed simulated annealing-based multi-objective particle swarm optimization is proposed for model solving. A CTF with six floating roof diesel tanks is adopted for case study. The simulated annealing-based jumping mechanism can effectively avoid the local optimum, which makes the algorithm easier to obtain the trade-off with great convergence and diversity. The proposed methodology can provide safer and more cost-effective design solutions. Results indicate that the design parameters can significantly affect the regional domino risk distribution. The conflicting nature between safety and economy is discussed. This work is of great significance for the safety and reliability of MPI.

Suggested Citation

  • Men, Jinkun & Chen, Guohua & Reniers, Genserik, 2024. "Pareto-based design optimization of chemical tank farm using a trade-off between domino effects related and land resource utilization efficiency," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:reensy:v:249:y:2024:i:c:s095183202400276x
    DOI: 10.1016/j.ress.2024.110203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202400276X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    2. Tom McLeod Logan & Terje Aven & Seth David Guikema & Roger Flage, 2022. "Risk science offers an integrated approach to resilience," Nature Sustainability, Nature, vol. 5(9), pages 741-748, September.
    3. Wu, Xingguang & Huang, Huirong & Xie, Jianyu & Lu, Meixing & Wang, Shaobo & Li, Wang & Huang, Yixuan & Yu, Weichao & Sun, Xiaobo, 2023. "A novel dynamic risk assessment method for the petrochemical industry using bow-tie analysis and Bayesian network analysis method based on the methodological framework of ARAMIS project," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Di Maio, Francesco & Marchetti, Stefano & Zio, Enrico, 2023. "Robust multi-objective optimization of safety barriers performance parameters for NaTech scenarios risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Zhou, Jianfeng & Reniers, Genserik, 2022. "Petri-net based cooperation modeling and time analysis of emergency response in the context of domino effect prevention in process industries," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    6. Khakzad, Nima, 2023. "A goal programming approach to multi-objective optimization of firefighting strategies in the event of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    7. Necci, Amos & Cozzani, Valerio & Spadoni, Gigliola & Khan, Faisal, 2015. "Assessment of domino effect: State of the art and research Needs," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 3-18.
    8. Zhou, Jianfeng & Reniers, Genserik & Cozzani, Valerio, 2023. "A Petri-net approach for firefighting force allocation analysis of fire emergency response with backups," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part II—Risk Assessment and Mitigation System," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    10. Men, Jinkun & Chen, Guohua & Yang, Yunfeng & Reniers, Genserik, 2022. "An event-driven probabilistic methodology for modeling the spatial-temporal evolution of natural hazard-induced domino chain in chemical industrial parks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    11. He, Zhichao & Shen, Kaixin & Lan, Meng & Weng, Wenguo, 2024. "An evacuation path planning method for multi-hazard accidents in chemical industries based on risk perception," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    12. Chen, Chao & Reniers, Genserik & Khakzad, Nima, 2019. "Integrating safety and security resources to protect chemical industrial parks from man-made domino effects: A dynamic graph approach," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part I—Failure Analysis," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    14. Tugnoli, Alessandro & Cozzani, Valerio & Di Padova, Annamaria & Barbaresi, Tiziana & Tallone, Fabrizio, 2012. "Mitigation of fire damage and escalation by fireproofing: A risk-based strategy," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 25-35.
    15. Guo, Xiaoxue & Ding, Long & Ji, Jie & Cozzani, Valerio, 2022. "A cost-effective optimization model of safety investment allocation for risk reduction of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. Francesco Di Maio & Stefano Marchetti & Enrico Zio, 2023. "Robust multi-objective optimization of safety barriers performance parameters for NaTech scenarios risk assessment and management," Post-Print hal-04103505, HAL.
    17. He, Zhichao & Shen, Kaixin & Lan, Meng & Weng, Wenguo, 2024. "The effects of dynamic multi-hazard risk assessment on evacuation strategies in chemical accidents," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khakzad, Nima, 2023. "A goal programming approach to multi-objective optimization of firefighting strategies in the event of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Amin, Md. Tanjin & Scarponi, Giordano Emrys & Cozzani, Valerio & Khan, Faisal, 2024. "Improved pool fire-initiated domino effect assessment in atmospheric tank farms using structural response," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Cai, Jitao & Wu, Jiansong & Yuan, Shuaiqi & Reniers, Genserik & Bai, Yiping, 2024. "Risk-based optimization of emergency response systems for accidental gas leakage in utility tunnels," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    5. Lan, Meng & Gardoni, Paolo & Weng, Wenguo & Shen, Kaixin & He, Zhichao & Pan, Rongliang, 2024. "Modeling the evolution of industrial accidents triggered by natural disasters using dynamic graphs: A case study of typhoon-induced domino accidents in storage tank areas," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Ricci, Federica & Yang, Ming & Reniers, Genserik & Cozzani, Valerio, 2024. "Emergency response in cascading scenarios triggered by natural events," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Cheraghi, Morteza & Taghipour, Sharareh, 2024. "A mathematical optimization model for determining safety integrity levels in process facilities," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Feng, Xinhang & Jiang, Yanli & Gai, Wenmei, 2024. "Rural community response to accidental toxic gas release: An individual emergency response model during self-organized evacuations," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    9. Zhou, Lixing & Chen, Guohua & Zheng, Mianbin & Gao, Xiaoming & Luo, Chennan & Rao, Xiaohui, 2024. "Agent-based modeling methodology and temporal simulation for Natech events in chemical clusters," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Li, Xiaofeng & Chen, Guohua & Amyotte, Paul & Khan, Faisal & Alauddin, Mohammad, 2023. "Vulnerability assessment of storage tanks exposed to simultaneous fire and explosion hazards," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Dui, Hongyan & Lu, Yaohui & Chen, Liwei, 2024. "Importance-based system cost management and failure risk analysis for different phases in life cycle," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. Tugnoli, Alessandro & Scarponi, Giordano Emrys & Antonioni, Giacomo & Cozzani, Valerio, 2022. "Quantitative assessment of domino effect and escalation scenarios caused by fragment projection," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Ding, Long & Khan, Faisal & Ji, Jie, 2022. "A novel vulnerability model considering synergistic effect of fire and overpressure in chemical processing facilities," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    14. Landucci, Gabriele & Necci, Amos & Antonioni, Giacomo & Argenti, Francesca & Cozzani, Valerio, 2017. "Risk assessment of mitigated domino scenarios in process facilities," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 37-53.
    15. Dong, Mingxin & Zhang, Zhen & Liu, Yi & Zhao, Dong Feng & Meng, Yifei & Shi, Jihao, 2023. "Playing Bayesian Stackelberg game model for optimizing the vulnerability level of security incident system in petrochemical plants," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    16. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    17. Liu, Jinbiao & Tan, Lingling & Ma, Yaping, 2024. "An integrated risk assessment method for urban areas due to chemical leakage accidents," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    18. He, Zhichao & Shen, Kaixin & Lan, Meng & Weng, Wenguo, 2024. "The effects of dynamic multi-hazard risk assessment on evacuation strategies in chemical accidents," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    19. Khakzad, Nima & Landucci, Gabriele & Reniers, Genserik, 2017. "Application of dynamic Bayesian network to performance assessment of fire protection systems during domino effects," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 232-247.
    20. Wu, Xingguang & Huang, Huirong & Xie, Jianyu & Lu, Meixing & Wang, Shaobo & Li, Wang & Huang, Yixuan & Yu, Weichao & Sun, Xiaobo, 2023. "A novel dynamic risk assessment method for the petrochemical industry using bow-tie analysis and Bayesian network analysis method based on the methodological framework of ARAMIS project," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:249:y:2024:i:c:s095183202400276x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.