IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v105y2012icp25-35.html
   My bibliography  Save this article

Mitigation of fire damage and escalation by fireproofing: A risk-based strategy

Author

Listed:
  • Tugnoli, Alessandro
  • Cozzani, Valerio
  • Di Padova, Annamaria
  • Barbaresi, Tiziana
  • Tallone, Fabrizio

Abstract

Passive fire protection by the application of fireproofing materials is a crucial safety barrier in the prevention of the escalation of fire scenarios. Fireproofing improves the capacity of process items and of support structures to maintain their structural integrity during a fire, preventing or at least delaying the collapse of structural elements. Maintenance and cost issues require, however, to apply such protection only where an actual risk of severe fire scenarios is present. Available methodologies for fireproofing application in on-shore installation do not consider the effect of jet-fires. In the present study, a risk-based methodology aimed at the protection from both pool fire and jet fire escalation was developed. The procedure addresses both the prevention of domino effect and the mitigation of asset damage due to the primary fire scenario. The method is mainly oriented to early design application, allowing the identification of fireproofing zones in the initial phases of lay-out definition.

Suggested Citation

  • Tugnoli, Alessandro & Cozzani, Valerio & Di Padova, Annamaria & Barbaresi, Tiziana & Tallone, Fabrizio, 2012. "Mitigation of fire damage and escalation by fireproofing: A risk-based strategy," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 25-35.
  • Handle: RePEc:eee:reensy:v:105:y:2012:i:c:p:25-35
    DOI: 10.1016/j.ress.2011.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011002390
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cerotti, Davide & Gribaudo, Marco & Bobbio, Andrea, 2014. "Markovian agents models for wireless sensor networks deployed in environmental protection," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 149-158.
    2. Necci, Amos & Cozzani, Valerio & Spadoni, Gigliola & Khan, Faisal, 2015. "Assessment of domino effect: State of the art and research Needs," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 3-18.
    3. Necci, Amos & Antonioni, Giacomo & Cozzani, Valerio & Krausmann, Elisabeth & Borghetti, Alberto & Alberto Nucci, Carlo, 2013. "A model for process equipment damage probability assessment due to lightning," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 91-99.
    4. Khakzad, Nima & Landucci, Gabriele & Cozzani, Valerio & Reniers, Genserik & Pasman, Hans, 2018. "Cost-effective fire protection of chemical plants against domino effects," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 412-421.
    5. Paltrinieri, Nicola & Tugnoli, Alessandro & Cozzani, Valerio, 2015. "Hazard identification for innovative LNG regasification technologies," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 18-28.
    6. Ricci, Federica & Yang, Ming & Reniers, Genserik & Cozzani, Valerio, 2024. "Emergency response in cascading scenarios triggered by natural events," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Landucci, Gabriele & Argenti, Francesca & Tugnoli, Alessandro & Cozzani, Valerio, 2015. "Quantitative assessment of safety barrier performance in the prevention of domino scenarios triggered by fire," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 30-43.
    8. Khakzad, Nima & Landucci, Gabriele & Reniers, Genserik, 2017. "Application of dynamic Bayesian network to performance assessment of fire protection systems during domino effects," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 232-247.
    9. Landucci, Gabriele & Necci, Amos & Antonioni, Giacomo & Argenti, Francesca & Cozzani, Valerio, 2017. "Risk assessment of mitigated domino scenarios in process facilities," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 37-53.
    10. Landucci, Gabriele & Reniers, Genserik & Cozzani, Valerio & Salzano, Ernesto, 2015. "Vulnerability of industrial facilities to attacks with improvised explosive devices aimed at triggering domino scenarios," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 53-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:105:y:2012:i:c:p:25-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.