IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v247y2024ics0951832024002023.html
   My bibliography  Save this article

Emergent lifetime distribution from complex network systems aging

Author

Listed:
  • Liu, Yimeng
  • Sui, Shaobo
  • Lu, Dan
  • Peng, Rui
  • Bai, Mingyang
  • Li, Daqing

Abstract

Most theoretical analysis for lifetime distribution explains origins of specific distribution based on independent failure. We develop one unified framework encompassing different kinds of lifetime distribution for failure coupling system. For typical complex networks, we found that three types of system lifetime distributions are emerged shaped by system size and failure coupling strength. When the failure coupling strength Ï• dominates, systems exhibit a cascade failure mode, the system lifetime following an exponential distribution as series systems due to long-range correlation. When the system size N dominates, systems exhibit wear-out failure mode, the system lifetime following the Gompertz model as parallel systems due to short-range correlation. When N and Ï• have comparable impact on systems, system lifetime follows a modified Weibull distribution. We find the critical failure coupling strength and critical system size which are helpful to identify the failure mode switch point. We provide rigorous theoretical analysis for emerged lifetime distribution. We reveal the microscopic mechanism of system lifetime distribution switch pattern by analyzing the competence between correlation length and network diameter. Finally, we verify our conclusions in real networks. Our study will help to understand the lifetime origin of complex systems and design highly reliable systems.

Suggested Citation

  • Liu, Yimeng & Sui, Shaobo & Lu, Dan & Peng, Rui & Bai, Mingyang & Li, Daqing, 2024. "Emergent lifetime distribution from complex network systems aging," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024002023
    DOI: 10.1016/j.ress.2024.110128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ke Wang & Yong Li & Jun Wu, 2019. "Identifying multiple vulnerable areas of infrastructure network under global connectivity measure," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 30(07), pages 1-17, July.
    2. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Wang, Ning, 2024. "Algorithms for Bayesian network modeling and reliability inference of complex multistate systems with common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Bouwmeester, J. & Menicucci, A. & Gill, E.K.A., 2022. "Improving CubeSat reliability: Subsystem redundancy or improved testing?," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    4. Zheng, Xiao-Wei & Li, Hong-Nan & Gardoni, Paolo, 2023. "Hybrid Bayesian-Copula-based risk assessment for tall buildings subject to wind loads considering various uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    5. Wu, Gongyu & Li, Meiyan & Li, Zhaojun Steven, 2021. "A Gene Importance based Evolutionary Algorithm (GIEA) for identifying critical nodes in Cyber–Physical Power Systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    6. Sarhan, Ammar M. & Apaloo, Joseph, 2013. "Exponentiated modified Weibull extension distribution," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 137-144.
    7. Zhang, Le & Du, Ye, 2023. "Cascading failure model and resilience enhancement scheme of space information networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Nazarizadeh, Farzaneh & Alemtabriz, Akbar & Zandieh, Mostafa & Raad, Abbas, 2022. "An analytical model for reliability assessment of the rail system considering dependent failures (case study of Iranian railway)," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    9. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    11. Xing, Liudong & Levitin, Gregory, 2013. "BDD-based reliability evaluation of phased-mission systems with internal/external common-cause failures," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 145-153.
    12. Bellè, Andrea & Zeng, Zhiguo & Duval, Carole & Sango, Marc & Barros, Anne, 2022. "Modeling and vulnerability analysis of interdependent railway and power networks: Application to British test systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Qin, Shuidan & Wang, Bing Xing & Tsai, Tzong-Ru & Wang, Xiaofei, 2023. "The prediction of remaining useful lifetime for the Weibull k-out-of-n load-sharing system," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Yu, Yaocheng & Shuai, Bin & Huang, Wencheng, 2024. "Resilience evaluation of train control on-board system considering common cause failure: Based on a beta-factor and continuous-time bayesian network model," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    3. Abbasizadeh, Ali & Azad-Farsani, Ehsan, 2024. "Cyber-constrained load shedding for smart grid resilience enhancement," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Zhang, Xi & Liu, Dong & Tu, Haicheng & Tse, Chi Kong, 2022. "An integrated modeling framework for cascading failure study and robustness assessment of cyber-coupled power grids," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Davies, Katherine & Dembińska, Anna, 2024. "On the residual lifetimes of dependent components upon system failure," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    8. Zhang, Chao & Xu, Xin & Dui, Hongyan, 2020. "Analysis of network cascading failure based on the cluster aggregation in cyber-physical systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    9. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A resilience-based framework for the optimal coupling of interdependent critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. D'Urso, Diego & Chiacchio, Ferdinando & Cavalieri, Salvatore & Gambadoro, Salvatore & Khodayee, Soheyl Moheb, 2024. "Predictive maintenance of standalone steel industrial components powered by a dynamic reliability digital twin model with artificial intelligence," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Bier, Vicki & Gutfraind, Alexander, 2019. "Risk analysis beyond vulnerability and resilience – characterizing the defensibility of critical systems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 626-636.
    12. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    13. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    14. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    15. Guido Caldarelli & Matthieu Cristelli & Andrea Gabrielli & Luciano Pietronero & Antonio Scala & Andrea Tacchella, 2012. "A Network Analysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
    16. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    17. Shang, Lihui & Zhao, Mingming & Ai, Jun & Su, Zhan, 2021. "Opinion evolution in the Sznajd model on interdependent chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    18. Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    19. Doumen, Sjoerd C. & Nguyen, Phuong & Kok, Koen, 2022. "Challenges for large-scale Local Electricity Market implementation reviewed from the stakeholder perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    20. Shogo Mizutaka & Kousuke Yakubo, 2017. "Structural instability of large-scale functional networks," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-11, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024002023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.