IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v246y2024ics0951832024001637.html
   My bibliography  Save this article

A novel hybrid STL-transformer-ARIMA architecture for aviation failure events prediction

Author

Listed:
  • Zeng, Hang
  • Zhang, Hongmei
  • Guo, Jiansheng
  • Ren, Bo
  • Cui, Lijie
  • Wu, Jiangnan

Abstract

Accurate prediction of aviation failure events helps to anticipate future safety situations and protect against further uncontrollable accidents. However, the large sample size, complex temporal characteristics, and significant long-term correlation of aviation failure events increase the operational cost of accurate prediction. To address these challenges, this paper proposes a novel approach involving seasonal-trend decomposition using Loess (STL) and a hybrid prediction model consisting of a transformer and autoregressive integrated moving average (ARIMA). First, STL decomposition is utilized to isolate trend, seasonal, and remainder components, contributing to a comprehensive understanding of the events sample characteristics. The trend component is then trained and predicted using transformer, solving the vanishing gradient problem and improving computational efficiency. ARIMA is employed to train and predict the seasonal and remainder components, maintaining accuracy while reducing complexity. Finally, a comparative evaluation between the proposed and multiple existing approaches is conducted using Aviation Safety Reporting System (ASRS) data. The results demonstrate that the STL-transformer-ARIMA provides more accurate predictions of failure events than single model. It also exhibits significant advantages in robustness and generalization capacity compared to single transformer-based predictors. This revealed that the proposed approach performed better in predicting aviation failure events.

Suggested Citation

  • Zeng, Hang & Zhang, Hongmei & Guo, Jiansheng & Ren, Bo & Cui, Lijie & Wu, Jiangnan, 2024. "A novel hybrid STL-transformer-ARIMA architecture for aviation failure events prediction," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001637
    DOI: 10.1016/j.ress.2024.110089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024001637
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Li & Ou, Yanxia & Cai, Jingjing & Wang, Jin & Fu, Yang & Bian, Xiaoyan, 2023. "Offshore wind speed assessment with statistical and attention-based neural network methods based on STL decomposition," Renewable Energy, Elsevier, vol. 216(C).
    2. Yu, Hongxia & Li, Xing, 2019. "On the chaos analysis and prediction of aircraft accidents based on multi-timescales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    3. Aslam, Faheem & Zil-e-huma, & Bibi, Rashida & Ferreira, Paulo, 2022. "Cross-correlations between economic policy uncertainty and precious and industrial metals: A multifractal cross-correlation analysis," Resources Policy, Elsevier, vol. 75(C).
    4. Liu, Junqiang & Pan, Chunlu & Lei, Fan & Hu, Dongbin & Zuo, Hongfu, 2021. "Fault prediction of bearings based on LSTM and statistical process analysis," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    5. Lima, João P.S. & Evangelista, F. & Guedes Soares, C., 2023. "Hyperparameter-optimized multi-fidelity deep neural network model associated with subset simulation for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raza, Syed Ali & Masood, Amna & Benkraiem, Ramzi & Urom, Christian, 2023. "Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach," Energy Economics, Elsevier, vol. 120(C).
    2. Chen, Chuanhai & Li, Bowen & Guo, Jinyan & Liu, Zhifeng & Qi, Baobao & Hua, Chunlei, 2022. "Bearing life prediction method based on the improved FIDES reliability model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    3. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A. & Ferreira, Paulo & Aslam, Faheem & Tabak, Benjamin Miranda, 2022. "Interplay multifractal dynamics among metal commodities and US-EPU," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    4. Li, Hongtao & Gedikli, Ersegun Deniz & Lubbad, Raed, 2020. "Exploring time-delay-based numerical differentiation using principal component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    5. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Li, Jing, 2022. "Transferable adaptive channel attention module for unsupervised cross-domain fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Ghazani, Majid Mirzaee & Khosravi, Reza & Caporin, Massimiliano, 2023. "Analyzing interconnection among selected commodities in the 2008 global financial crisis and the COVID-19 pandemic," Resources Policy, Elsevier, vol. 80(C).
    7. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A., 2022. "Multifractal risk measures by Macroeconophysics perspective: The case of Brazilian inflation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    8. Deng, Congying & Deng, Zihao & Miao, Jianguo, 2024. "Semi-supervised ensemble fault diagnosis method based on adversarial decoupled auto-encoder with extremely limited labels," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Liu, Wenhui & Bai, Yulong & Yue, Xiaoxin & Wang, Rui & Song, Qi, 2024. "A wind speed forcasting model based on rime optimization based VMD and multi-headed self-attention-LSTM," Energy, Elsevier, vol. 294(C).
    10. Bai, Ruxue & Meng, Zong & Xu, Quansheng & Fan, Fengjie, 2023. "Fractional Fourier and time domain recurrence plot fusion combining convolutional neural network for bearing fault diagnosis under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    11. Bermeo-Ayerbe, Miguel Angel & Cocquempot, Vincent & Ocampo-Martinez, Carlos & Diaz-Rozo, Javier, 2023. "Remaining useful life estimation of ball-bearings based on motor current signature analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    12. Faheem Aslam & Paulo Ferreira & Haider Ali & Ana Ercília José, 2022. "Application of Multifractal Analysis in Estimating the Reaction of Energy Markets to Geopolitical Acts and Threats," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    13. Maquieira, Carlos P. & Espinosa-Méndez, Christian & Gahona-Flores, Orlando, 2023. "How does economic policy uncertainty (EPU) impact copper-firms stock returns? International evidence," Resources Policy, Elsevier, vol. 81(C).
    14. Wei, Yu & Bai, Lan & Li, Xiafei, 2022. "Normal and extreme interactions among nonferrous metal futures: A new quantile-frequency connectedness approach," Finance Research Letters, Elsevier, vol. 47(PB).
    15. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Bian, Wenbin, 2023. "Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    16. Dong, Youheng & Zhao, Geng, 2021. "A spatiotemporal chaotic system based on pseudo-random coupled map lattices and elementary cellular automata," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    17. Zhang, Chen & Hu, Di & Yang, Tao, 2024. "Research of artificial intelligence operations for wind turbines considering anomaly detection, root cause analysis, and incremental training," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    18. Huifu Nong, 2024. "Integration and risk transmission across supply, demand, and prices in China’s housing market," Economic Change and Restructuring, Springer, vol. 57(3), pages 1-28, June.
    19. Aslam, Faheem & Hunjra, Ahmed Imran & Memon, Bilal Ahmed & Zhang, Mingda, 2024. "Interplay of multifractal dynamics between shadow policy rates and energy markets," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    20. Yang, Dongchuan & Li, Mingzhu & Guo, Ju-e & Du, Pei, 2024. "An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting," Applied Energy, Elsevier, vol. 375(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.