IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v244y2024ics0951832024000437.html
   My bibliography  Save this article

A novel layer-by-layer recursive decomposition algorithm for calculation of network reliability

Author

Listed:
  • Wu, Baichao
  • Sun, Long

Abstract

Efficient and exact network reliability calculation is required in a timely manner to ensure continued and reliable operation of the infrastructure networks after natural or man-made disasters. Previous studies have found that binary decision diagram (BDD) based algorithms are more efficient in dealing with network reliability computation. However, the BDD-based algorithm needs to store all the generated BDD nodes, there is still a memory overflow problem due to the limited memory space. In this paper, a new layer-by-layer recursive decomposition algorithm is proposed, and it only needs to store no more than twice of the largest BDD nodes in the same layer of all layers, and these are only a small part of all the BDD nodes in the BDD-based algorithm. The algorithm proposed in this paper is not only efficient, but also takes up less storage space. Based on a personal computer with 16Â G of memory, when the target network has tens of thousands of nodes and tens of thousands of variables, the proposed algorithm only takes up a small amount of storage resources, but the BDD-based algorithm has caused memory overflow problems. The experimental results show the effectiveness and efficiency of the proposed method.

Suggested Citation

  • Wu, Baichao & Sun, Long, 2024. "A novel layer-by-layer recursive decomposition algorithm for calculation of network reliability," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000437
    DOI: 10.1016/j.ress.2024.109968
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024000437
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.109968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yeh, Wei-Chang & Tan, Shi-Yi & Zhu, Wenbo & Huang, Chia-Ling & Yang, Guang-yi, 2022. "Novel binary addition tree algorithm (BAT) for calculating the direct lower-bound of the highly reliable binary-state network reliability," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Sebastio, Stefano & Trivedi, Kishor S. & Wang, Dazhi & Yin, Xiaoyan, 2014. "Fast computation of bounds for two-terminal network reliability," European Journal of Operational Research, Elsevier, vol. 238(3), pages 810-823.
    3. Yeh, Wei-Chang & Hao, Zhifeng & Forghani-elahabad, Majid & Wang, Gai-Ge & Lin, Yih-Lon, 2021. "Novel Binary-Addition Tree Algorithm for Reliability Evaluation of Acyclic Multistate Information Networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    4. Kawahara, Jun & Sonoda, Koki & Inoue, Takeru & Kasahara, Shoji, 2019. "Efficient construction of binary decision diagrams for network reliability with imperfect vertices," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 142-154.
    5. Yeh, Wei-Chang, 2021. "Novel binary-addition tree algorithm (BAT) for binary-state network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    6. Yeh, Wei-Chang, 2021. "A quick BAT for evaluating the reliability of binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining & Xu, Bei, 2022. "Modeling and evaluation method for resilience analysis of multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. Yeh, Wei-Chang, 2023. "QB-II for evaluating the reliability of binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Mo, Yuchang & Xing, Liudong & Zhong, Farong & Pan, Zhusheng & Chen, Zhongyu, 2014. "Choosing a heuristic and root node for edge ordering in BDD-based network reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 83-93.
    10. Yeh, Wei-Chang, 2023. "Novel recursive inclusion-exclusion technology based on BAT and MPs for heterogeneous-arc binary-state network reliability problems," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Yeh, Wei-Chang & Chu, Ta-Chung, 2018. "A novel multi-distribution multi-state flow network and its reliability optimization problem," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 209-217.
    12. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    13. Reed, Sean & Löfstrand, Magnus & Andrews, John, 2019. "An efficient algorithm for computing exact system and survival signatures of K-terminal network reliability," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 429-439.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Hongjun & Wang, Fei & Ma, Xinwei & Zhu, Minqing, 2022. "A novel fixed-node unconnected subgraph method for calculating the reliability of binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Yeh, Wei-Chang, 2022. "Novel direct algorithm for computing simultaneous all-level reliability of multistate flow networks," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Yeh, Wei-Chang & Du, Chia-Ming & Tan, Shi-Yi & Forghani-elahabad, Majid, 2023. "Application of LSTM based on the BAT-MCS for binary-state network approximated time-dependent reliability problems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Yeh, Wei-Chang & Tan, Shi-Yi & Zhu, Wenbo & Huang, Chia-Ling & Yang, Guang-yi, 2022. "Novel binary addition tree algorithm (BAT) for calculating the direct lower-bound of the highly reliable binary-state network reliability," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Davila-Frias, Alex & Yodo, Nita & Le, Trung & Yadav, Om Prakash, 2023. "A deep neural network and Bayesian method based framework for all-terminal network reliability estimation considering degradation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Yeh, Wei-Chang & Zhu, Wenbo & Tan, Shi-Yi & Wang, Gai-Ge & Yeh, Yuan-Hui, 2022. "Novel general active reliability redundancy allocation problems and algorithm," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    7. Yeh, Wei-Chang, 2024. "A new hybrid inequality BAT for comprehensive all-level d-MP identification using minimal paths in Multistate Flow Network reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    8. Yeh, Wei-Chang, 2024. "Time-reliability optimization for the stochastic traveling salesman problem," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    9. Yeh, Wei-Chang, 2022. "Novel self-adaptive Monte Carlo simulation based on binary-addition-tree algorithm for binary-state network reliability approximation," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    10. Monfared, M.A.S. & Rezazadeh, Masoumeh & Alipour, Zohreh, 2022. "Road networks reliability estimations and optimizations: A Bi-directional bottom-up, top-down approach," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Hao, Zhifeng & Yeh, Wei-Chang & Tan, Shi-Yi, 2021. "One-batch preempt deterioration-effect multi-state multi-rework network reliability problem and algorithms," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Yeh, Wei-Chang & Tan, Shi-Yi & Forghani-elahabad, Majid & Khadiri, Mohamed El & Jiang, Yunzhi & Lin, Chen-Shiun, 2022. "New binary-addition tree algorithm for the all-multiterminal binary-state network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    13. Chen, Liwei & Cheng, Chunchun & Dui, Hongyan & Xing, Liudong, 2022. "Maintenance cost-based importance analysis under different maintenance strategies," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Yeh, Wei-Chang, 2021. "Novel Algorithm for Computing All-Pairs Homogeneity-Arc Binary-State Undirected Network Reliability," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Vaibhav Gaur & Om Prakash Yadav & Gunjan Soni & Ajay Pal Singh Rathore, 2021. "A literature review on network reliability analysis and its engineering applications," Journal of Risk and Reliability, , vol. 235(2), pages 167-181, April.
    16. Huang, Ding-Hsiang & Huang, Cheng-Fu & Lin, Yi-Kuei, 2020. "A novel minimal cut-based algorithm to find all minimal capacity vectors for multi-state flow networks," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1107-1114.
    17. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Wang, Jie & Zhang, Yangyi & Li, Shunlong & Xu, Wencheng & Jin, Yao, 2024. "Directed network-based connectivity probability evaluation for urban bridges," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    19. Cheng-Fu Huang & Ding-Hsiang Huang & Yi-Kuei Lin, 2022. "System reliability analysis for a cloud-based network under edge server capacity and budget constraints," Annals of Operations Research, Springer, vol. 312(1), pages 217-234, May.
    20. Haritha, P.C. & Anjaneyulu, M.V.L.R., 2024. "Comparison of topological functionality-based resilience metrics using link criticality," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.