IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v240y2023ics0951832023005215.html
   My bibliography  Save this article

Dynamic fleet maintenance management model applied to rolling stock

Author

Listed:
  • Crespo del Castillo, Adolfo
  • Marcos, José Antonio
  • Parlikad, Ajith Kumar

Abstract

This paper presents a model for optimising fleet maintenance management with a particular application to train rolling stock fleets. The proposed model produces a joint schedule for train operations and opportunistic predictive maintenance activities with an aim to maximise operational useful life. The model opportunistically allocates predictive maintenance interventions to existing preventive maintenance schedule considering the estimated remaining useful life (RUL) of critical components whilst ensuring fleet availability to meet operational demands as well as resource and time constraints at the maintenance depots. The proposed methodology is described in three phases: (i) definition of the operating context and maintenance resources; (ii) evaluation of feasible opportunistic maintenance timeslots; (iii) optimal maintenance and operations scheduling. The optimisation model, developed as a Mixed Integer Linear Programming problem, is applied to a real industrial case study on a fleet of high-speed trains in Spain. The results show significant improvement in the utilisation of operational life of components compared to the current policies used by the company. Although the model was developed with particular consideration to the train fleets, it can be adapted for other sectors such as bus fleets and airlines with similar operational constraints.

Suggested Citation

  • Crespo del Castillo, Adolfo & Marcos, José Antonio & Parlikad, Ajith Kumar, 2023. "Dynamic fleet maintenance management model applied to rolling stock," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023005215
    DOI: 10.1016/j.ress.2023.109607
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023005215
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yu & Zheng, Ran, 2024. "Capacity-based daily maintenance optimization of urban bus with multi-objective failure priority ranking," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Li, Yan & Zhang, Wei & Liu, Baoliang & Wang, Xiaofeng, 2024. "Availability and maintenance strategy under time-varying environments for redundant repairable systems with PH distributions," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    3. Lu, Yaohui & Wang, Shaoping & Zhang, Chao & Chen, Rentong & Dui, Hongyan & Mu, Rui, 2024. "Adaptive maintenance window-based opportunistic maintenance optimization considering operational reliability and cost," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    4. Crespo del Castillo, Adolfo & Parlikad, Ajith Kumar, 2024. "Dynamic fleet management: Integrating predictive and preventive maintenance with operation workload balance to minimise cost," Reliability Engineering and System Safety, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torrado, Nuria, 2022. "Optimal component-type allocation and replacement time policies for parallel systems having multi-types dependent components," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    2. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    4. Kampitsis, Dimitris & Panagiotidou, Sofia, 2022. "A Bayesian condition-based maintenance and monitoring policy with variable sampling intervals," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. Toon Vanderschueren & Robert Boute & Tim Verdonck & Bart Baesens & Wouter Verbeke, 2022. "Prescriptive maintenance with causal machine learning," Papers 2206.01562, arXiv.org.
    6. Fu, Yuqiang & Wang, Jun & Peng, Rui & Yang, Lechang & Meng, Xiaoyang, 2024. "Random-time component reallocation and system replacement policy with minimal repair," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    7. An, Youjun & Chen, Xiaohui & Hu, Jiawen & Zhang, Lin & Li, Yinghe & Jiang, Junwei, 2022. "Joint optimization of preventive maintenance and production rescheduling with new machine insertion and processing speed selection," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    8. Excellence M. Kuyumani & Ali N. Hasan & Thokozani C. Shongwe, 2024. "A Combined Model of Convolutional Neural Network and Bidirectional Long Short-Term Memory with Attention Mechanism for Load Harmonics Forecasting," Energies, MDPI, vol. 17(11), pages 1-23, May.
    9. Cheng, Wanqing & Zhao, Xiujie, 2023. "Maintenance optimization for dependent two-component degrading systems subject to imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    10. Pedro Nunes & Eugénio Rocha & José Santos, 2024. "Adaptive Framework for Maintenance Scheduling Based on Dynamic Preventive Intervals and Remaining Useful Life Estimation," Future Internet, MDPI, vol. 16(6), pages 1-17, June.
    11. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    12. Verleijsdonk, Peter & van Jaarsveld, Willem & Kapodistria, Stella, 2024. "Scalable policies for the dynamic traveling multi-maintainer problem with alerts," European Journal of Operational Research, Elsevier, vol. 319(1), pages 121-134.
    13. Carpitella, Silvia & Mzougui, Ilyas & Benítez, Julio & Carpitella, Fortunato & Certa, Antonella & Izquierdo, Joaquín & La Cascia, Marco, 2021. "A risk evaluation framework for the best maintenance strategy: The case of a marine salt manufacture firm," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
    15. Barlow, E. & Bedford, T. & Revie, M. & Tan, J. & Walls, L., 2021. "A performance-centred approach to optimising maintenance of complex systems," European Journal of Operational Research, Elsevier, vol. 292(2), pages 579-595.
    16. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    17. Zhang, Jian-Xun & Du, Dang-Bo & Si, Xiao-Sheng & Hu, Chang-Hua & Zhang, Han-Wen, 2021. "Joint optimization of preventive maintenance and inventory management for standby systems with hybrid-deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    18. Yikai Ma & Wenjuan Zhang & Juergen Branke, 2024. "Genetic programming hyper-heuristic for evolving a maintenance policy for wind farms," Journal of Heuristics, Springer, vol. 30(5), pages 423-451, December.
    19. Asadi, Majid, 2023. "On a parametric model for the mean number of system repairs with applications," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. Karabağ, Oktay & Bulut, Önder & Toy, Ayhan Özgür & Fadıloğlu, Mehmet Murat, 2024. "An efficient procedure for optimal maintenance intervention in partially observable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023005215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.