IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v319y2024i1p121-134.html
   My bibliography  Save this article

Scalable policies for the dynamic traveling multi-maintainer problem with alerts

Author

Listed:
  • Verleijsdonk, Peter
  • van Jaarsveld, Willem
  • Kapodistria, Stella

Abstract

Downtime of industrial assets such as wind turbines and medical imaging devices is costly. To avoid such downtime costs, companies seek to initiate maintenance just before failure, which is challenging because: (i) Asset failures are notoriously difficult to predict, even in the presence of real-time monitoring devices which signal degradation; and (ii) Limited resources are available to serve a network of geographically dispersed assets. In this work, we study the dynamic traveling multi-maintainer problem with alerts (K-DTMPA) under perfect condition information with the objective to devise scalable solution approaches to maintain large networks with K maintenance engineers. Since such large-scale K-DTMPA instances are computationally intractable, we propose an iterative deep reinforcement learning (DRL) algorithm optimizing long-term discounted maintenance costs. The efficiency of the DRL approach is vastly improved by a reformulation of the action space (which relies on the Markov structure of the underlying problem) and by choosing a smart, suitable initial solution. The initial solution is created by extending existing heuristics with a dispatching mechanism. These extensions further serve as compelling benchmarks for tailored instances. We demonstrate through extensive numerical experiments that DRL can solve single maintainer instances up to optimality, regardless of the chosen initial solution. Experiments with hospital networks containing up to 35 assets show that the proposed DRL algorithm is scalable. Lastly, the trained policies are shown to be robust against network modifications such as removing an asset or an engineer or yield a suitable initial solution for the DRL approach.

Suggested Citation

  • Verleijsdonk, Peter & van Jaarsveld, Willem & Kapodistria, Stella, 2024. "Scalable policies for the dynamic traveling multi-maintainer problem with alerts," European Journal of Operational Research, Elsevier, vol. 319(1), pages 121-134.
  • Handle: RePEc:eee:ejores:v:319:y:2024:i:1:p:121-134
    DOI: 10.1016/j.ejor.2024.05.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724004284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.05.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:319:y:2024:i:1:p:121-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.