IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v171y2018icp57-66.html
   My bibliography  Save this article

A nonparametric Bayesian network approach to assessing system reliability at early design stages

Author

Listed:
  • Lee, Dongjin
  • Pan, Rong

Abstract

It is important to predict a system’s reliability at its early design stages because modifying design to improve reliability and maintainability at a later time in the system’s lifecycle will be costly and, oftentimes, impossible. However, this early prediction is challenging because of the lack of reliability data and the incomplete knowledge of a complex system’s reliability structure. To tackle this problem, this paper presents a nonparametric Bayesian network approach. Employing nonparametric Bayesian network, the limitation of discrete Bayesian network can be overcome, and it can be used as a useful tool for decision support. The proposed methodology is applied to a case study to demonstrate its prognostic and diagnostic capabilities.

Suggested Citation

  • Lee, Dongjin & Pan, Rong, 2018. "A nonparametric Bayesian network approach to assessing system reliability at early design stages," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 57-66.
  • Handle: RePEc:eee:reensy:v:171:y:2018:i:c:p:57-66
    DOI: 10.1016/j.ress.2017.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017305033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Liu & Xin Liu & Hong-Zhong Huang & Pingyu Zhu & Zhongwei Liang, 2022. "A new inherent reliability modeling and analysis method based on imprecise Dirichlet model for machine tool spindle," Annals of Operations Research, Springer, vol. 311(1), pages 295-310, April.
    2. Chen, Rentong & Zhang, Chao & Wang, Shaoping & Zio, Enrico & Dui, Hongyan & Zhang, Yadong, 2023. "Importance measures for critical components in complex system based on Copula Hierarchical Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Hund, Lauren & Schroeder, Benjamin & Rumsey, Kellin & Huerta, Gabriel, 2018. "Distinguishing between model- and data-driven inferences for high reliability statistical predictions," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 201-210.
    4. Shi, Wen & Zhou, Qing & Zhou, Yanju, 2023. "An efficient elementary effect-based method for sensitivity analysis in identifying main and two-factor interaction effects," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Fang, Guanqi & Pan, Rong & Hong, Yili, 2020. "Copula-based reliability analysis of degrading systems with dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Wang, Dapeng & Qiu, Haobo & Gao, Liang & Jiang, Chen, 2021. "A single-loop Kriging coupled with subset simulation for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Wang, Fan & Li, Heng & Dong, Chao & Ding, Lieyun, 2019. "Knowledge representation using non-parametric Bayesian networks for tunneling risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. Saberzadeh, Zahra & Razmkhah, Mostafa, 2022. "Reliability of degrading complex systems with two dependent components per element," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:171:y:2018:i:c:p:57-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.