IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v229y2023ics0951832022005105.html
   My bibliography  Save this article

Pattern investigation of total loss maritime accidents based on association rule mining

Author

Listed:
  • Lan, He
  • Ma, Xiaoxue
  • Ma, Laihao
  • Qiao, Weiliang

Abstract

Total loss of a ship is the most serious consequence of maritime accidents, which not only brings huge property losses, but causes serious human casualties and environmental pollution. Therefore, to reduce the occurrence of such accidents, this study investigates the significant patterns involved in total loss accidents using association rule technique. Based on a total of 1554 total loss accident data from 2010 to 2020 in the Information Handling Services (IHS) sea-web database, the Éclat algorithm is employed to extract association rules from total loss accident dataset associated with accident types and accident severity. The present study indicates that ships aged over 20 years is the key indicator of casualties in total loss accidents. Hull/machinery damage and foundered are the major types of accidents that frequently contribute to ship total loss. The results would help stakeholders involved understand the characteristics of total loss maritime accidents and put forward preventive measures to reduce the occurrence of similar accidents.

Suggested Citation

  • Lan, He & Ma, Xiaoxue & Ma, Laihao & Qiao, Weiliang, 2023. "Pattern investigation of total loss maritime accidents based on association rule mining," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022005105
    DOI: 10.1016/j.ress.2022.108893
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022005105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gil, Mateusz & Kozioł, Paweł & Wróbel, Krzysztof & Montewka, Jakub, 2022. "Know your safety indicator – A determination of merchant vessels Bow Crossing Range based on big data analytics," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Qiao, Wanguan & Liu, Quanlong & Li, Xinchun & Luo, Xixi & Wan, YuLong, 2018. "Using data mining techniques to analyze the influencing factor of unsafe behaviors in Chinese underground coal mines," Resources Policy, Elsevier, vol. 59(C), pages 210-216.
    3. Çakır, Erkan & Fışkın, Remzi & Sevgili, Coşkan, 2021. "Investigation of tugboat accidents severity: An application of association rule mining algorithms," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    4. Wang, Likun & Yang, Zaili, 2018. "Bayesian network modelling and analysis of accident severity in waterborne transportation: A case study in China," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 277-289.
    5. Wang, Huanxin & Liu, Zhengjiang & Wang, Xinjian & Graham, Tony & Wang, Jin, 2021. "An analysis of factors affecting the severity of marine accidents," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    6. Kandemir, Cagatay & Celik, Metin, 2021. "Determining the error producing conditions in marine engineering maintenance and operations through HFACS-MMO," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    7. Zhaochen Wang & Jingbo Yin, 2020. "Risk assessment of inland waterborne transportation using data mining," Maritime Policy & Management, Taylor & Francis Journals, vol. 47(5), pages 633-648, July.
    8. Jia, Xiaohui & Zhang, Donghui, 2021. "Prediction of maritime logistics service risks applying soft set based association rule: An early warning model," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    9. Carl Macrae, 2009. "Human factors at sea: common patterns of error in groundings and collisions," Maritime Policy & Management, Taylor & Francis Journals, vol. 36(1), pages 21-38, February.
    10. Fu, Lipeng & Wang, Xueqing & Zhao, Heng & Li, Mengnan, 2022. "Interactions among safety risks in metro deep foundation pit projects: An association rule mining-based modeling framework," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    11. Zhou, Ying & Li, Chenshuang & Ding, Lieyun & Sekula, Przemyslaw & Love, Peter E.D. & Zhou, Cheng, 2019. "Combining association rules mining with complex networks to monitor coupled risks," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 194-208.
    12. Fan, Shiqi & Blanco-Davis, Eduardo & Yang, Zaili & Zhang, Jinfen & Yan, Xinping, 2020. "Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    13. Bye, Rolf J. & Aalberg, Asbjørn L., 2018. "Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 174-186.
    14. Martins, Marcelo Ramos & Maturana, Marcos Coelho, 2013. "Application of Bayesian Belief networks to the human reliability analysis of an oil tanker operation focusing on collision accidents," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 89-109.
    15. Yildiz, Serdar & Uğurlu, Özkan & Wang, Jin & Loughney, Sean, 2021. "Application of the HFACS-PV approach for identification of human and organizational factors (HOFs) influencing marine accidents," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    16. Zhang, Yang & Sun, Xukai & Chen, Jihong & Cheng, Cheng, 2021. "Spatial patterns and characteristics of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    17. Lan, He & Ma, Xiaoxue & Qiao, Weiliang & Ma, Laihao, 2022. "On the causation of seafarers’ unsafe acts using grounded theory and association rule," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xin & Chen, Chao & Hong, Yi-du & Yang, Fu-qiang, 2023. "Exploring hazardous chemical explosion accidents with association rules and Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Lan, He & Ma, Xiaoxue & Qiao, Weiliang & Deng, Wanyi, 2023. "Determining the critical risk factors for predicting the severity of ship collision accidents using a data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lan, He & Ma, Xiaoxue & Qiao, Weiliang & Ma, Laihao, 2022. "On the causation of seafarers’ unsafe acts using grounded theory and association rule," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Lan, He & Ma, Xiaoxue & Qiao, Weiliang & Deng, Wanyi, 2023. "Determining the critical risk factors for predicting the severity of ship collision accidents using a data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Wang, Lei & Liu, Qing & Dong, Shiyu & Guedes Soares, C., 2022. "Selection of countermeasure portfolio for shipping safety with consideration of investment risk aversion," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Li, Baode & Lu, Jing & Li, Jing & Zhu, Xuebin & Huang, Chuan & Su, Wan, 2022. "Scenario evolutionary analysis for maritime emergencies using an ensemble belief rule base," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Guo, Yunlong & Jin, Yongxing & Hu, Shenping & Yang, Zaili & Xi, Yongtao & Han, Bing, 2023. "Risk evolution analysis of ship pilotage operation by an integrated model of FRAM and DBN," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Fu, Shanshan & Yu, Yuerong & Chen, Jihong & Xi, Yongtao & Zhang, Mingyang, 2022. "A framework for quantitative analysis of the causation of grounding accidents in arctic shipping," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. Obeng, Francis & Domeh, Daniel & Khan, Faisal & Bose, Neil & Sanli, Elizabeth, 2024. "An operational risk management approach for small fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    9. Ung, S.T., 2021. "Navigation Risk estimation using a modified Bayesian Network modeling-a case study in Taiwan," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan, 2022. "An extended HEART Dempster–Shafer evidence theory approach to assess human reliability for the gas freeing process on chemical tankers," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    11. Zhang, Jinfeng & Jin, Mei & Wan, Chengpeng & Dong, Zhijie & Wu, Xiaohong, 2024. "A Bayesian network-based model for risk modeling and scenario deduction of collision accidents of inland intelligent ships," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Munim, Ziaul Haque & Sørli, Michael André & Kim, Hyungju & Alon, Ilan, 2024. "Predicting maritime accident risk using Automated Machine Learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    14. Wang, Xinjian & Liu, Zhengjiang & Loughney, Sean & Yang, Zaili & Wang, Yanfu & Wang, Jin, 2022. "Numerical analysis and staircase layout optimisation for a Ro-Ro passenger ship during emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    15. Xiaoyuan Zhao & Haiwen Yuan & Qing Yu, 2021. "Autonomous Vessels in the Yangtze River: A Study on the Maritime Accidents Using Data-Driven Bayesian Networks," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
    16. Ruponen, Pekka & Montewka, Jakub & Tompuri, Markus & Manderbacka, Teemu & Hirdaris, Spyros, 2022. "A framework for onboard assessment and monitoring of flooding risk due to open watertight doors for passenger ships," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    17. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2024. "A framework for ship abnormal behaviour detection and classification using AIS data," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    18. Abreu, Danilo T.M.P. & Maturana, Marcos C. & Droguett, Enrique Lopez & Martins, Marcelo R., 2022. "Human reliability analysis of conventional maritime pilotage operations supported by a prospective model," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    19. Liangxia Zhong & Jiaxin Wu & Yiqing Wen & Bingjie Yang & Manel Grifoll & Yunping Hu & Pengjun Zheng, 2023. "Analysis of Factors Affecting the Effectiveness of Oil Spill Clean-Up: A Bayesian Network Approach," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    20. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Yang, Zaili, 2023. "Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022005105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.