IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v217y2022ics0951832021005986.html
   My bibliography  Save this article

Bayesian analysis for the transformed exponential dispersion process with random effects

Author

Listed:
  • Duan, Fengjun
  • Wang, Guanjun

Abstract

The basic exponential-dispersion (ED) process can be used to describe many degradation phenomena, but its degradation increments are only age-dependent, which limits its application especially for the phenomena with state-dependent degradation increments. This paper proposes a transformed ED (TED) process degradation model with both age- and state-dependent increments, which is an extended model including the basic ED process model as a special case. The mean and variance functions of the TED process are derived, and the variance-to-mean ratio of the TED process is no longer a constant. Besides, the random effect is introduced into the TED degradation process model to describe the heterogeneity among different units. For the TED process with and without random effects, the Bayesian MCMC algorithm is applied to estimate the model parameters. Further, an approximation method based on moment generating function is used to evaluate the lifetime and remaining useful life (RUL) distribution of products based on the fixed effect and random effect TED process models. Finally, a numerical example of GaAs laser is used to illustrate the effectiveness of the proposed models and methods. The results show that the proposed TED process has better performance for this degradation data set compared with existing process models.

Suggested Citation

  • Duan, Fengjun & Wang, Guanjun, 2022. "Bayesian analysis for the transformed exponential dispersion process with random effects," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021005986
    DOI: 10.1016/j.ress.2021.108104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021005986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiao, 2010. "Wiener processes with random effects for degradation data," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 340-351, February.
    2. Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2019. "Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 261-270.
    3. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Giorgio, Massimiliano & Pulcini, Gianpaolo, 2018. "A new state-dependent degradation process and related model misidentification problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1027-1038.
    5. Zhi‐Sheng Ye & Min Xie, 2015. "Rejoinder to ‘Stochastic modelling and analysis of degradation for highly reliable products’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 35-36, January.
    6. Pulcini, Gianpaolo, 2016. "A perturbed gamma process with statistically dependent measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 296-306.
    7. Li, Junxing & Wang, Zhihua & Zhang, Yongbo & Liu, Chengrui & Fu, Huimin, 2018. "A nonlinear Wiener process degradation model with autoregressive errors," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 48-57.
    8. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    9. Chen, Zhen & Pan, Ershun & Xia, Tangbin & Li, Yanting, 2020. "Optimal degradation-based burn-in policy using Tweedie exponential-dispersion process model with measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    10. Zhi‐Sheng Ye & Min Xie, 2015. "Stochastic modelling and analysis of degradation for highly reliable products," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 16-32, January.
    11. Massimiliano Giorgio & Fabio Postiglione & Gianpaolo Pulcini, 2020. "Bayesian estimation and prediction for the transformed Wiener degradation process," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(4), pages 660-678, July.
    12. Massimiliano Giorgio & Agostino Mele & Gianpaolo Pulcini, 2019. "A perturbed gamma degradation process with degradation dependent non‐Gaussian measurement errors," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(2), pages 198-210, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Le & Guo, Junyu & Wan, Jia-Lun & Wang, Jiang & Zan, Xueping, 2022. "A reliability evaluation model of rolling bearings based on WKN-BiGRU and Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Yan, Weian & Xu, Xiaofan & Bigaud, David & Cao, Wenqin, 2023. "Optimal design of step-stress accelerated degradation tests based on the Tweedie exponential dispersion process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Chen, Wen-Bin & Li, Xiao-Yang & Kang, Rui, 2022. "Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Pang, Zhenan & Li, Tianmei & Pei, Hong & Si, Xiaosheng, 2023. "A condition-based prognostic approach for age- and state-dependent partially observable nonlinear degrading system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Fan, Linchuan & Chai, Yi & Chen, Xiaolong, 2022. "Trend attention fully convolutional network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2019. "Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 261-270.
    3. Santos, Cristiano C. & Loschi, Rosangela H., 2020. "Semi-parametric Bayesian models for heterogeneous degradation data: An application to laser data," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    4. Xudan Chen & Guoxun Ji & Xinli Sun & Zhen Li, 2019. "Inverse Gaussian–based model with measurement errors for degradation analysis," Journal of Risk and Reliability, , vol. 233(6), pages 1086-1098, December.
    5. Song, Kai & Shi, Jian & Yi, Xiaojian, 2020. "A time-discrete and zero-adjusted gamma process model with application to degradation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    6. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    7. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Xu, Jun & Liang, Zhenglin & Li, Yan-Fu & Wang, Kaibo, 2021. "Generalized condition-based maintenance optimization for multi-component systems considering stochastic dependency and imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    10. Sheu, Shey-Huei & Liu, Tzu-Hsin & Sheu, Wei-Teng & Zhang, Zhe-George & Ke, Jau-Chuan, 2021. "Optimal replacement policy with replacement last under cumulative damage models," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Pang, Zhenan & Si, Xiaosheng & Hu, Changhua & Du, Dangbo & Pei, Hong, 2021. "A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    12. Sun, Xuxue & Cai, Wenjun & Li, Mingyang, 2021. "A hierarchical modeling approach for degradation data with mixed-type covariates and latent heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    14. Dong, Qinglai & Cui, Lirong, 2019. "A study on stochastic degradation process models under different types of failure Thresholds," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 202-212.
    15. Hu, Jiawen & Chen, Piao, 2020. "Predictive maintenance of systems subject to hard failure based on proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    16. Junyu Guo & Hong-Zhong Huang & Weiwen Peng & Jie Zhou, 2019. "Bayesian information fusion for degradation analysis of deteriorating products with individual heterogeneity," Journal of Risk and Reliability, , vol. 233(4), pages 615-622, August.
    17. Kong, Xuefeng & Yang, Jun & Hao, Songhua, 2021. "Reliability modeling-based tolerance design and process parameter analysis considering performance degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    18. Fang, Guanqi & Pan, Rong & Wang, Yukun, 2022. "Inverse Gaussian processes with correlated random effects for multivariate degradation modeling," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1177-1193.
    19. Liao, Guobo & Yin, Hongpeng & Chen, Min & Lin, Zheng, 2021. "Remaining useful life prediction for multi-phase deteriorating process based on Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    20. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021005986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.