IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v210y2021ics095183202100082x.html
   My bibliography  Save this article

Sensitivity analysis and model calibration as a part of the model development process in radioactive waste disposal safety assessment

Author

Listed:
  • Saveleva, Elena
  • Svitelman, Valentina
  • Blinov, Petr
  • Valetov, Dmitry

Abstract

Safety assessment and safety case development require uncertainty management as a key part of the confidence-building process. In application to the numerical modelling, the global sensitivity analysis and model calibration tools are widely employed for dealing with parametric and conceptual uncertainties. Even in the light of the broadly accepted paradigm that the safety assessment in general and the modelling itself are iterative procedures, the models are often treated as a fixed problem. In this paper, we present the illustrations of the concept that the sensitivity analysis and calibration provide significant information for model development, choice, and enhancement. The given examples show that uncertainty management steps are not the final stages of the computational model development, but an inseparable part of the modelling process.

Suggested Citation

  • Saveleva, Elena & Svitelman, Valentina & Blinov, Petr & Valetov, Dmitry, 2021. "Sensitivity analysis and model calibration as a part of the model development process in radioactive waste disposal safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:reensy:v:210:y:2021:i:c:s095183202100082x
    DOI: 10.1016/j.ress.2021.107521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202100082X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deman, G. & Kerrou, J. & Benabderrahmane, H. & Perrochet, P., 2015. "Sensitivity analysis of groundwater lifetime expectancy to hydro-dispersive parameters: The case of ANDRA Meuse/Haute-Marne site," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 276-286.
    2. Helton, Jon C. & Hansen, Clifford W. & Sallaberry, Cédric J., 2012. "Uncertainty and sensitivity analysis in performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 44-63.
    3. Spiessl, Sabine M. & Kucherenko, Sergei & Becker, Dirk-A. & Zaccheus, Oluyemi, 2019. "Higher-order sensitivity analysis of a final repository model with discontinuous behaviour using the RS-HDMR meta-modeling approach," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 149-158.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buchwald, J. & Kolditz, O. & Nagel, T., 2024. "Design-of-Experiment (DoE) based history matching for probabilistic integrity analysis—A case study of the FE-experiment at Mont Terri," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helton, J.C. & Hansen, C.W. & Sallaberry, C.J., 2014. "Conceptual structure and computational organization of the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 223-248.
    2. Rechard, Rob P. & Freeze, Geoff A. & Perry, Frank V., 2014. "Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 74-95.
    3. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. McFarland, John & DeCarlo, Erin, 2020. "A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    5. Deman, G. & Kerrou, J. & Benabderrahmane, H. & Perrochet, P., 2015. "Sensitivity analysis of groundwater lifetime expectancy to hydro-dispersive parameters: The case of ANDRA Meuse/Haute-Marne site," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 276-286.
    6. Narkuniene, Asta & Poskas, Povilas & Kilda, Raimondas & Bartkus, Gytis, 2015. "Uncertainty and sensitivity analysis of radionuclide migration through the engineered barriers of deep geological repository: Case of RBMK-1500 SNF," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 8-16.
    7. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Margins associated with loss of assured safety for systems with multiple weak links and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    8. Rechard, Rob P. & Wilson, Michael L. & Sevougian, S. David, 2014. "Progression of performance assessment modeling for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 96-123.
    9. Steiner, M. & Bourinet, J.-M. & Lahmer, T., 2019. "An adaptive sampling method for global sensitivity analysis based on least-squares support vector regression," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 323-340.
    10. Chakraborty, Souvik & Chowdhury, Rajib, 2017. "A hybrid approach for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 50-57.
    11. Zhang, Xiaoge & Mahadevan, Sankaran & Lau, Nathan & Weinger, Matthew B., 2020. "Multi-source information fusion to assess control room operator performance," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    12. Shi, Wen & Chen, Xi, 2019. "Controlled Morris method: A new factor screening approach empowered by a distribution-free sequential multiple testing procedure," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 299-314.
    13. Allaire, Douglas & Noel, George & Willcox, Karen & Cointin, Rebecca, 2014. "Uncertainty quantification of an Aviation Environmental Toolsuite," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 14-24.
    14. BULUT, Merve & ÖZCAN, Evrencan, 2021. "A new approach to determine maintenance periods of the most critical hydroelectric power plant equipment," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    15. Rechard, Rob P., 2014. "Results from past performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 207-222.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:210:y:2021:i:c:s095183202100082x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.