IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v122y2014icp74-95.html
   My bibliography  Save this article

Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

Author

Listed:
  • Rechard, Rob P.
  • Freeze, Geoff A.
  • Perry, Frank V.

Abstract

This paper summarizes various hazards identified between 1978 when Yucca Mountain, located in arid southern Nevada, was first proposed as a potential site and 2008 when the license application to construct a repository for spent nuclear fuel and high-level radioactive waste was submitted. Although advantages of an arid site are many, hazard identification and scenario development have generally recognized fractures in the tuff as important features; climate change, water infiltration and percolation, and an oxidizing environment as important processes; and igneous activity, seismicity, human intrusion, and criticality as important disruptive events to consider at Yucca Mountain. Some of the scientific and technical challenges encountered included a change in the repository design from in-floor emplacement with small packages to in-drift emplacement with large packages without backfill. This change, in turn, increased the importance of igneous and seismic hazards.

Suggested Citation

  • Rechard, Rob P. & Freeze, Geoff A. & Perry, Frank V., 2014. "Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 74-95.
  • Handle: RePEc:eee:reensy:v:122:y:2014:i:c:p:74-95
    DOI: 10.1016/j.ress.2013.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013001798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.06.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helton, Jon C. & Sallaberry, Cedric J., 2009. "Conceptual basis for the definition and calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 677-698.
    2. Norman A. Eisenberg & Michael P. Lee & Timothy J. McCartin & Keith I. McConnell & Mark Thaggard & Andrew C. Campbell, 1999. "Development of a Performance Assessment Capability in the Waste Management Programs of the U.S. Nuclear Regulatory Commission," Risk Analysis, John Wiley & Sons, vol. 19(5), pages 847-876, October.
    3. Helton, Jon C. & Hansen, Clifford W. & Sallaberry, Cédric J., 2012. "Uncertainty and sensitivity analysis in performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 44-63.
    4. Rob P. Rechard & Martin S. Tierney & Larry C. Sanchez & Mary‐Alena Martell, 1997. "Bounding Estimates for Critical Events When Directly Disposing Highly Enriched Spent Nuclear Fuel in Unsaturated Tuff," Risk Analysis, John Wiley & Sons, vol. 17(1), pages 19-35, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard A. Muller & Stefan Finsterle & John Grimsich & Rod Baltzer & Elizabeth A. Muller & James W. Rector & Joe Payer & John Apps, 2019. "Disposal of High-Level Nuclear Waste in Deep Horizontal Drillholes," Energies, MDPI, vol. 12(11), pages 1-28, May.
    2. Suh, Jung Woo & Sohn, So Young & Lee, Bo Kyeong, 2020. "Patent clustering and network analyses to explore nuclear waste management technologies," Energy Policy, Elsevier, vol. 146(C).
    3. Edoardo Tosoni & Ahti Salo & Enrico Zio, 2018. "Scenario Analysis for the Safety Assessment of Nuclear Waste Repositories: A Critical Review," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 755-776, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rechard, Rob P., 2014. "Results from past performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 207-222.
    2. Rechard, Rob P. & Wilson, Michael L. & Sevougian, S. David, 2014. "Progression of performance assessment modeling for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 96-123.
    3. Helton, J.C. & Hansen, C.W. & Sallaberry, C.J., 2014. "Conceptual structure and computational organization of the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 223-248.
    4. Helton, Jon C. & Johnson, Jay D. & Sallaberry, Cédric J., 2011. "Quantification of margins and uncertainties: Example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1014-1033.
    5. Zio, E. & Pedroni, N., 2010. "An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1300-1313.
    6. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. McFarland, John & DeCarlo, Erin, 2020. "A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    8. Sallaberry, C.J. & Hansen, C.W. & Helton, J.C., 2014. "Expected dose for the igneous scenario classes in the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 339-353.
    9. Deman, G. & Kerrou, J. & Benabderrahmane, H. & Perrochet, P., 2015. "Sensitivity analysis of groundwater lifetime expectancy to hydro-dispersive parameters: The case of ANDRA Meuse/Haute-Marne site," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 276-286.
    10. Narkuniene, Asta & Poskas, Povilas & Kilda, Raimondas & Bartkus, Gytis, 2015. "Uncertainty and sensitivity analysis of radionuclide migration through the engineered barriers of deep geological repository: Case of RBMK-1500 SNF," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 8-16.
    11. Rechard, Rob P. & Cotton, Thomas A. & Voegele, Michael D., 2014. "Site selection and regulatory basis for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 7-31.
    12. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Margins associated with loss of assured safety for systems with multiple weak links and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    13. Saveleva, Elena & Svitelman, Valentina & Blinov, Petr & Valetov, Dmitry, 2021. "Sensitivity analysis and model calibration as a part of the model development process in radioactive waste disposal safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    14. Helton, Jon C. & Hansen, Clifford W. & Sallaberry, Cédric J., 2012. "Uncertainty and sensitivity analysis in performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 44-63.
    15. Rob P. Rechard & Martin S. Tierney, 2005. "Improbability of Igneous Intrusion Promoting a Critical Event in Spent Nuclear Fuel Disposed in Unsaturated Tuff," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 997-1028, August.
    16. Steiner, M. & Bourinet, J.-M. & Lahmer, T., 2019. "An adaptive sampling method for global sensitivity analysis based on least-squares support vector regression," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 323-340.
    17. Hansen, C.W. & Behie, G.A. & Brooks, K.M. & Chen, Y. & Helton, J.C. & Hommel, S.P. & Lee, K.P. & Lester, B. & Mattie, P.D. & Mehta, S. & Miller, S.P. & Sallaberry, C.J. & Sevougian, S.D. & Wasiolek, M, 2014. "Assessment of compliance with ground water protection standards in the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 442-448.
    18. Rechard, Rob P. & Liu, Hui-Hai & Tsang, Yvonne W. & Finsterle, Stefan, 2014. "Site characterization of the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 32-52.
    19. Helton, J.C. & Hansen, C.W. & Sallaberry, C.J., 2014. "Expected dose for the nominal scenario class in the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 267-271.
    20. Cadini, F. & Gioletta, A. & Zio, E., 2015. "Improved metamodel-based importance sampling for the performance assessment of radioactive waste repositories," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 188-197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:122:y:2014:i:c:p:74-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.