IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v199y2020ics0951832018314832.html
   My bibliography  Save this article

Who cares what it means? Practical reasons for using the word resilience with critical infrastructure operators

Author

Listed:
  • Petersen, L.
  • Lange, D.
  • Theocharidou, M.

Abstract

Resilience: a highly debated term, with what seems to be an endless amount of slightly varied definitions depending on the sector, domain, or researcher who is addressing the topic, mainly boils down to rebounding after a crisis. For critical infrastructure (CI), the EU-funded H2020 IMPROVER project used the following definition: “the ability of a CI system exposed to hazards to resist, absorb, accommodate to and recover from the effects of a hazard in a timely and efficient manner, for the preservation and restoration of essential societal services.†This was the starting point for much of the work done within that project, however, through six interactive workshops with infrastructure operators organized by the IMPROVER project, what has become apparent is that the definition of resilience isn't what matters; what does matter is the way resilience changes the outlook of operators. This paper presents the results of a critical thematic analysis carried out on the discussions held at these workshops. The findings reflect the practitioners’ views on resilience and are in strong agreement with much of the current academic literature, in particular with literature on resilience engineering. One of the main findings is that resilience as a concept is operationalisable and that a lack of a consensus on details of a definition is no obstacle to using the term or striving to operationalise it. Indeed, resilience is an optimistic approach when compared to current risk management practices, allowing operators to be actors in responding to crisis as opposed to simply being subjects exposed to risks. While many aspects of resilience are also found in risk management, the ability to learn how to respond to unexpected events appears to empower operators. Furthermore, the change in perspective from risk to resilience better deals with another change critical infrastructure operators are going through: from protecting assets from hazards to being able to continuously provide a minimum level of essential services to the public.

Suggested Citation

  • Petersen, L. & Lange, D. & Theocharidou, M., 2020. "Who cares what it means? Practical reasons for using the word resilience with critical infrastructure operators," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832018314832
    DOI: 10.1016/j.ress.2020.106872
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018314832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy Prior & Jonas Hagmann, 2014. "Measuring resilience: methodological and political challenges of a trend security concept," Journal of Risk Research, Taylor & Francis Journals, vol. 17(3), pages 281-298, March.
    2. Erwann Michel-Kerjan, 2015. "We must build resilience into our communities," Nature, Nature, vol. 524(7566), pages 389-389, August.
    3. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    4. Igor Linkov & Todd Bridges & Felix Creutzig & Jennifer Decker & Cate Fox-Lent & Wolfgang Kröger & James H. Lambert & Anders Levermann & Benoit Montreuil & Jatin Nathwani & Raymond Nyer & Ortwin Renn &, 2014. "Changing the resilience paradigm," Nature Climate Change, Nature, vol. 4(6), pages 407-409, June.
    5. Labaka, Leire & Hernantes, Josune & Sarriegi, Jose M., 2015. "Resilience framework for critical infrastructures: An empirical study in a nuclear plant," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 92-105.
    6. Kyujin Jung & Minsun Song, 2015. "Linking emergency management networks to disaster resilience: bonding and bridging strategy in hierarchical or horizontal collaboration networks," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1465-1483, July.
    7. Bergström, Johan & van Winsen, Roel & Henriqson, Eder, 2015. "On the rationale of resilience in the domain of safety: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 131-141.
    8. Helen Boon & Alison Cottrell & David King & Robert Stevenson & Joanne Millar, 2012. "Bronfenbrenner’s bioecological theory for modelling community resilience to natural disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 381-408, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. da Silva, Fellipe Sartori & Matelli, José Alexandre, 2021. "Resilience in cogeneration systems: Metrics for evaluation and influence of design aspects," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. R. Cantelmi & G. Di Gravio & R. Patriarca, 2021. "Reviewing qualitative research approaches in the context of critical infrastructure resilience," Environment Systems and Decisions, Springer, vol. 41(3), pages 341-376, September.
    3. Alena Splichalova & David Patrman & Nikol Kotalova & Martin Hromada, 2020. "Managerial Decision Making in Indicating a Disruption of Critical Infrastructure Element Resilience," Administrative Sciences, MDPI, vol. 10(3), pages 1-18, September.
    4. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A data-driven distributionally robust approach for the optimal coupling of interdependent critical infrastructures under random failures," European Journal of Operational Research, Elsevier, vol. 309(2), pages 872-889.
    5. Papamichael, Michalis & Dimopoulos, Christos & Boustras, Georgios & Vryonides, Marios, 2024. "Performing risk assessment for critical infrastructure protection: A study of human decision-making and practitioners' transnationalism considerations," International Journal of Critical Infrastructure Protection, Elsevier, vol. 45(C).
    6. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2022. "A demand-based framework for resilience assessment of multistate networks under disruptions," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corinne Curt & Jean‐Marc Tacnet, 2018. "Resilience of Critical Infrastructures: Review and Analysis of Current Approaches," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2441-2458, November.
    2. David J. Yu & Michael L. Schoon & Jason K. Hawes & Seungyoon Lee & Jeryang Park & P. Suresh C. Rao & Laura K. Siebeneck & Satish V. Ukkusuri, 2020. "Toward General Principles for Resilience Engineering," Risk Analysis, John Wiley & Sons, vol. 40(8), pages 1509-1537, August.
    3. Márcio das Chagas Moura & Helder Henrique Lima Diniz & Enrique López Droguett & Beatriz Sales da Cunha & Isis Didier Lins & Vicente Ribeiro Simoni, 2017. "Embedding resilience in the design of the electricity supply for industrial clients," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-33, November.
    4. Labaka, Leire & Hernantes, Josune & Sarriegi, Jose M., 2016. "A holistic framework for building critical infrastructure resilience," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 21-33.
    5. Adrian J. Hickford & Simon P. Blainey & Alejandro Ortega Hortelano & Raghav Pant, 2018. "Resilience engineering: theory and practice in interdependent infrastructure systems," Environment Systems and Decisions, Springer, vol. 38(3), pages 278-291, September.
    6. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Mujjuni, F. & Betts, T. & To, L.S. & Blanchard, R.E., 2021. "Resilience a means to development: A resilience assessment framework and a catalogue of indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Yifan Yang & S. Thomas Ng & Frank J. Xu & Martin Skitmore & Shenghua Zhou, 2019. "Towards Resilient Civil Infrastructure Asset Management: An Information Elicitation and Analytical Framework," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    10. Ivo Häring & Mirjam Fehling-Kaschek & Natalie Miller & Katja Faist & Sebastian Ganter & Kushal Srivastava & Aishvarya Kumar Jain & Georg Fischer & Kai Fischer & Jörg Finger & Alexander Stolz & Tobias , 2021. "A performance-based tabular approach for joint systematic improvement of risk control and resilience applied to telecommunication grid, gas network, and ultrasound localization system," Environment Systems and Decisions, Springer, vol. 41(2), pages 286-329, June.
    11. Susanne Moser & Sara Meerow & James Arnott & Emily Jack-Scott, 2019. "The turbulent world of resilience: interpretations and themes for transdisciplinary dialogue," Climatic Change, Springer, vol. 153(1), pages 21-40, March.
    12. Labaka, Leire & Hernantes, Josune & Sarriegi, Jose M., 2015. "Resilience framework for critical infrastructures: An empirical study in a nuclear plant," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 92-105.
    13. Liang Zhao & Fanneng He & Caishan Zhao, 2020. "A Framework of Resilience Development for Poor Villages after the Wenchuan Earthquake Based on the Principle of “Build Back Better”," Sustainability, MDPI, vol. 12(12), pages 1-25, June.
    14. Xiaolong Xue & Liang Wang & Rebecca J. Yang, 2018. "Exploring the science of resilience: critical review and bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 477-510, January.
    15. Malandri, Caterina & Mantecchini, Luca & Postorino, Maria Nadia, 2023. "A comprehensive approach to assess transportation system resilience towards disruptive events. Case study on airside airport systems," Transport Policy, Elsevier, vol. 139(C), pages 109-122.
    16. Cinta Lomba-Fernández & Josune Hernantes & Leire Labaka, 2019. "Guide for Climate-Resilient Cities: An Urban Critical Infrastructures Approach," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    17. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    19. Kenneth Pettersen Gould, 2021. "Organizational Risk: “Muddling Through” 40 Years of Research," Risk Analysis, John Wiley & Sons, vol. 41(3), pages 456-465, March.
    20. Cheng, Yao & Elsayed, E.A. & Chen, Xi, 2021. "Random Multi Hazard Resilience Modeling of Engineered Systems and Critical Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832018314832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.