IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v195y2020ics0951832018313115.html
   My bibliography  Save this article

Bayesian entropy network for fusion of different types of information

Author

Listed:
  • Wang, Yuhao
  • Liu, Yongming

Abstract

A hybrid method for information fusion combining the maximum entropy (ME) method with the classical Bayesian network is proposed as the Bayesian-Entropy Network (BEN) in this paper. The key benefit of the proposed method is the capability to handle various types of information for classification and updating, such as classical point data, abstracted statistical information, and range data. The detailed derivation of the proposed is given and special focus is on the formulation of different types of information as constraints embedded in the entropy part. The Bayesian part is used to handle classical point observation data. Next, an adaptive algorithm is proposed to mitigate the impact of wrong information constraints on the final posterior distribution estimation. Following this, several examples are used to demonstrate the proposed methodology and application to engineering problems. It is shown that the proposed method is a generalized form of classical Bayesian method, and can take advantage of the extra information. This advantage is preferable in many engineering applications especially when the number of point observations is limited. Conclusions and future work are drawn based on the current study.

Suggested Citation

  • Wang, Yuhao & Liu, Yongming, 2020. "Bayesian entropy network for fusion of different types of information," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:reensy:v:195:y:2020:i:c:s0951832018313115
    DOI: 10.1016/j.ress.2019.106747
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018313115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liou, James J.H. & Tzeng, Gwo-Hshiung & Chang, Han-Chun, 2007. "Airline safety measurement using a hybrid model," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 243-249.
    2. Sankararaman, Shankar & Mahadevan, Sankaran, 2011. "Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 814-824.
    3. VanDerHorn, Eric & Mahadevan, Sankaran, 2018. "Bayesian model updating with summarized statistical and reliability data," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 12-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng & Gao, Su, 2021. "An agent-based clustering framework for reliable satellite networks," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Wang, Yuhao & Pang, Yutian & Chen, Oliver & Iyer, Hari N. & Dutta, Parikshit & Menon, P.K. & Liu, Yongming, 2021. "Uncertainty quantification and reduction in aircraft trajectory prediction using Bayesian-Entropy information fusion," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Chen, Jie & Yu, Yang & Liu, Yongming, 2022. "Physics-guided mixture density networks for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Zhou, Daoqing & He, Jingjing & Du, Yi-Mu & Sun, C.P. & Guan, Xuefei, 2021. "Probabilistic information fusion with point, moment and interval data in reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Wang, Yuhao & Gao, Yi & Liu, Yongming & Ghosh, Sayan & Subber, Waad & Pandita, Piyush & Wang, Liping, 2021. "Bayesian-entropy gaussian process for constrained metamodeling," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Xiaoyan & Mahadevan, Sankaran & Xu, Peida & Deng, Yong, 2014. "Inclusion of task dependence in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 41-55.
    2. Tohme, Tony & Vanslette, Kevin & Youcef-Toumi, Kamal, 2020. "A generalized Bayesian approach to model calibration," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Wang, Tsung-Cheng, 2012. "The interactive trade decision-making research: An application case of novel hybrid MCDM model," Economic Modelling, Elsevier, vol. 29(3), pages 926-935.
    4. Hsu, C.-H. & Wang, Fu-Kwun & Tzeng, Gwo-Hshiung, 2012. "The best vendor selection for conducting the recycled material based on a hybrid MCDM model combining DANP with VIKOR," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 95-111.
    5. Raja Rub Nawaz & Dr.Rafique Ahmed & Sajida Reza, 2015. "Prioritization Of Quality Care Criteria To Deliver Quality Service Using Dematel," IBT Journal of Business Studies (JBS), Ilma University, Faculty of Management Science, vol. 11(2), pages 165-181.
    6. Büyüközkan, Gülçin & Güleryüz, Sezin, 2016. "An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey," International Journal of Production Economics, Elsevier, vol. 182(C), pages 435-448.
    7. Chen, Jeng-Chung & Yu, Vincent F., 2018. "Relationship between human error intervention strategies and unsafe acts: The role of strategy implementability," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 112-122.
    8. Ivan Pribićević & Boris Delibašić, 2021. "Critical sustainability indicators identification and cause–effect relationships analysis for sustainable organization strategy based on fuzzy DEMATEL," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17263-17304, December.
    9. Atif Shahab Butt & DR.Irfan Hameed & DR.Imran Hameed, 2016. "The Moderating Role Of Social Class: Effect Of Brand Service Scapes On Loyalty," IBT Journal of Business Studies (JBS), Ilma University, Faculty of Management Science, vol. 12(2), pages 37-54.
    10. Sankararaman, S. & Mahadevan, S., 2013. "Separating the contributions of variability and parameter uncertainty in probability distributions," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 187-199.
    11. Greco, Salvatore F. & Podofillini, Luca & Dang, Vinh N., 2021. "A Bayesian model to treat within-category and crew-to-crew variability in simulator data for Human Reliability Analysis," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    12. Moath Alrifaey & Tang Sai Hong & Eris Elianddy Supeni & Azizan As’arry & Chun Kit Ang, 2019. "Identification and Prioritization of Risk Factors in an Electrical Generator Based on the Hybrid FMEA Framework," Energies, MDPI, vol. 12(4), pages 1-22, February.
    13. Kasım KİRACI & Mehmet YAŞAR, 2020. "The Determinants of Airline Operational Performance: An Empirical Study on Major World Airlines," Sosyoekonomi Journal, Sosyoekonomi Society, issue 28(43).
    14. Liu, Chui-Hua & Tzeng, Gwo-Hshiung & Lee, Ming-Huei, 2012. "Improving tourism policy implementation – The use of hybrid MCDM models," Tourism Management, Elsevier, vol. 33(2), pages 413-426.
    15. Chia-Wei Hsu & Tsai-Chi Kuo & Guey-Shin Shyu & Pi-Shen Chen, 2014. "Low Carbon Supplier Selection in the Hotel Industry," Sustainability, MDPI, vol. 6(5), pages 1-27, May.
    16. N-C Xiao & H-Z Huang & Z Wang & Y Li & Y Liu, 2012. "Reliability analysis of series systems with multiple failure modes under epistemic and aleatory uncertainties," Journal of Risk and Reliability, , vol. 226(3), pages 295-304, June.
    17. Yildirim, Ercan & AR, Ilker Murat & Dabić, Marina & Baki, Birdogan & Peker, Iskender, 2022. "A multi-stage decision making model for determining a suitable innovation structure using an open innovation approach," Journal of Business Research, Elsevier, vol. 147(C), pages 379-391.
    18. Jui-Kuei Chen & I-Shuo Chen, 2012. "An Inno-Qual performance system for higher education," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 1119-1149, December.
    19. Mi, Jinhua & Li, Yan-Feng & Yang, Yuan-Jian & Peng, Weiwen & Huang, Hong-Zhong, 2016. "Reliability assessment of complex electromechanical systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 1-15.
    20. Barak, Sasan & Dahooei, Jalil Heidary, 2018. "A novel hybrid fuzzy DEA-Fuzzy MADM method for airlines safety evaluation," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 134-149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:195:y:2020:i:c:s0951832018313115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.