IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v195y2020ics0951832018313115.html
   My bibliography  Save this article

Bayesian entropy network for fusion of different types of information

Author

Listed:
  • Wang, Yuhao
  • Liu, Yongming

Abstract

A hybrid method for information fusion combining the maximum entropy (ME) method with the classical Bayesian network is proposed as the Bayesian-Entropy Network (BEN) in this paper. The key benefit of the proposed method is the capability to handle various types of information for classification and updating, such as classical point data, abstracted statistical information, and range data. The detailed derivation of the proposed is given and special focus is on the formulation of different types of information as constraints embedded in the entropy part. The Bayesian part is used to handle classical point observation data. Next, an adaptive algorithm is proposed to mitigate the impact of wrong information constraints on the final posterior distribution estimation. Following this, several examples are used to demonstrate the proposed methodology and application to engineering problems. It is shown that the proposed method is a generalized form of classical Bayesian method, and can take advantage of the extra information. This advantage is preferable in many engineering applications especially when the number of point observations is limited. Conclusions and future work are drawn based on the current study.

Suggested Citation

  • Wang, Yuhao & Liu, Yongming, 2020. "Bayesian entropy network for fusion of different types of information," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:reensy:v:195:y:2020:i:c:s0951832018313115
    DOI: 10.1016/j.ress.2019.106747
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018313115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liou, James J.H. & Tzeng, Gwo-Hshiung & Chang, Han-Chun, 2007. "Airline safety measurement using a hybrid model," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 243-249.
    2. VanDerHorn, Eric & Mahadevan, Sankaran, 2018. "Bayesian model updating with summarized statistical and reliability data," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 12-24.
    3. Sankararaman, Shankar & Mahadevan, Sankaran, 2011. "Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 814-824.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng & Gao, Su, 2021. "An agent-based clustering framework for reliable satellite networks," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Wang, Yuhao & Pang, Yutian & Chen, Oliver & Iyer, Hari N. & Dutta, Parikshit & Menon, P.K. & Liu, Yongming, 2021. "Uncertainty quantification and reduction in aircraft trajectory prediction using Bayesian-Entropy information fusion," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Chen, Jie & Yu, Yang & Liu, Yongming, 2022. "Physics-guided mixture density networks for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Zhou, Daoqing & He, Jingjing & Du, Yi-Mu & Sun, C.P. & Guan, Xuefei, 2021. "Probabilistic information fusion with point, moment and interval data in reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Wang, Yuhao & Gao, Yi & Liu, Yongming & Ghosh, Sayan & Subber, Waad & Pandita, Piyush & Wang, Liping, 2021. "Bayesian-entropy gaussian process for constrained metamodeling," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tohme, Tony & Vanslette, Kevin & Youcef-Toumi, Kamal, 2020. "A generalized Bayesian approach to model calibration," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Su, Xiaoyan & Mahadevan, Sankaran & Xu, Peida & Deng, Yong, 2014. "Inclusion of task dependence in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 41-55.
    3. MacLean, Leonard & Richman, Alex & MacLean, Stuart, 2016. "Benchmarking airports with specific safety performance measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 349-364.
    4. Wang, Tsung-Cheng, 2012. "The interactive trade decision-making research: An application case of novel hybrid MCDM model," Economic Modelling, Elsevier, vol. 29(3), pages 926-935.
    5. Hsu, C.-H. & Wang, Fu-Kwun & Tzeng, Gwo-Hshiung, 2012. "The best vendor selection for conducting the recycled material based on a hybrid MCDM model combining DANP with VIKOR," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 95-111.
    6. Raja Rub Nawaz & Dr.Rafique Ahmed & Sajida Reza, 2015. "Prioritization Of Quality Care Criteria To Deliver Quality Service Using Dematel," IBT Journal of Business Studies (JBS), Ilma University, Faculty of Management Science, vol. 11(2), pages 165-181.
    7. Akshay Hinduja & Manju Pandey, 2019. "An Integrated Intuitionistic Fuzzy MCDM Approach to Select Cloud-Based ERP System for SMEs," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1875-1908, November.
    8. Mi, Jinhua & Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Bai, Libing, 2022. "An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Kuldeep Kavta & Arkopal K. Goswami, 2021. "A methodological framework for a priori selection of travel demand management package using fuzzy MCDM methods," Transportation, Springer, vol. 48(6), pages 3059-3084, December.
    10. Liu, Yushan & Li, Luyi & Chang, Zeming, 2023. "Efficient Bayesian model updating for dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    11. Büyüközkan, Gülçin & Güleryüz, Sezin, 2016. "An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey," International Journal of Production Economics, Elsevier, vol. 182(C), pages 435-448.
    12. Chen, Jeng-Chung & Yu, Vincent F., 2018. "Relationship between human error intervention strategies and unsafe acts: The role of strategy implementability," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 112-122.
    13. Ivan Pribićević & Boris Delibašić, 2021. "Critical sustainability indicators identification and cause–effect relationships analysis for sustainable organization strategy based on fuzzy DEMATEL," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17263-17304, December.
    14. Wen‐Hsien Tsai & Yu‐Wei Chou & Kuen‐Chang Lee & Wan‐Rung Lin & Elliott T.Y. Hwang, 2013. "Combining Decision Making Trial and Evaluation Laboratory with Analytic Network Process to Perform an Investigation of Information Technology Auditing and Risk Control in an Enterprise Resource Planni," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(2), pages 176-193, March.
    15. Chen, I-Shuo, 2016. "A combined MCDM model based on DEMATEL and ANP for the selection of airline service quality improvement criteria: A study based on the Taiwanese airline industry," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 7-18.
    16. Atif Shahab Butt & DR.Irfan Hameed & DR.Imran Hameed, 2016. "The Moderating Role Of Social Class: Effect Of Brand Service Scapes On Loyalty," IBT Journal of Business Studies (JBS), Ilma University, Faculty of Management Science, vol. 12(2), pages 37-54.
    17. Lu, Ming-Tsang & Hsu, Chao-Che & Liou, James J.H. & Lo, Huai-Wei, 2018. "A hybrid MCDM and sustainability-balanced scorecard model to establish sustainable performance evaluation for international airports," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 9-19.
    18. Xiang Peng & Xiaoqing Xu & Jiquan Li & Shaofei Jiang, 2021. "A Sampling-Based Sensitivity Analysis Method Considering the Uncertainties of Input Variables and Their Distribution Parameters," Mathematics, MDPI, vol. 9(10), pages 1-18, May.
    19. Sankararaman, S. & Mahadevan, S., 2013. "Separating the contributions of variability and parameter uncertainty in probability distributions," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 187-199.
    20. Mi, Jinhua & Li, Yan-Feng & Peng, Weiwen & Huang, Hong-Zhong, 2018. "Reliability analysis of complex multi-state system with common cause failure based on evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 71-81.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:195:y:2020:i:c:s0951832018313115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.