IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v169y2018icp199-208.html
   My bibliography  Save this article

Importance sampling-based system reliability analysis of corroding pipelines considering multiple failure modes

Author

Listed:
  • Gong, C.
  • Zhou, W.

Abstract

The importance sampling (IS) technique is employed to evaluate the time-dependent system reliability of corroding pipeline segments containing multiple active corrosion defects by considering two competing failure modes, small leak and burst. The IS density functions in the standard normal space for incremental probabilities of small leak and burst of the pipe segment over a short time period are established as the weighted averages of the IS density functions for small leak and burst, respectively, at individual corrosion defects. The IS density functions for incremental probabilities of small leak and burst of individual defects are centred at the design points in the corresponding failure domains. Four numerical examples that are representative of the onshore gas transmission pipelines in the US are used to illustrate the application of the proposed methodology. The results demonstrate the excellent accuracy and efficiency of the methodology.

Suggested Citation

  • Gong, C. & Zhou, W., 2018. "Importance sampling-based system reliability analysis of corroding pipelines considering multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 199-208.
  • Handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:199-208
    DOI: 10.1016/j.ress.2017.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016306378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Echard, B. & Gayton, N. & Lemaire, M. & Relun, N., 2013. "A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 232-240.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shan, Xiangying & Yu, Weichao & Hu, Bing & Wen, Kai & Ren, Shipeng & Men, Yang & Li, Mingrui & Gong, Jing & Zheng, Honglong & Hong, Bingyuan, 2024. "A methodology to determine target gas supply reliability of natural gas pipeline system based on cost-benefit analysis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    2. Liu, Aihua & Chen, Ke & Huang, Xiaofei & Li, Didi & Zhang, Xiaochun, 2021. "Dynamic risk assessment model of buried gas pipelines based on system dynamics," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    3. Xiao, Rui & Zayed, Tarek & Meguid, Mohamed A. & Sushama, Laxmi, 2024. "Improving failure modeling for gas transmission pipelines: A survival analysis and machine learning integrated approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Zhou, Yicheng & Lu, Zhenzhou & Yun, Wanying, 2020. "Active sparse polynomial chaos expansion for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    5. Kere, Kiswendsida J. & Huang, Qindan, 2024. "An analytical approach to evaluate life-cycle cost of deteriorating pipelines," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    6. Adumene, Sidum & Khan, Faisal & Adedigba, Sunday & Zendehboudi, Sohrab, 2021. "Offshore system safety and reliability considering microbial influenced multiple failure modes and their interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Gao, Haifeng & Wang, Anjenq & Zio, Enrico & Bai, Guangchen, 2020. "An integrated reliability approach with improved importance sampling for low-cycle fatigue damage prediction of turbine disks," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    8. Cao, Quoc Dung & Choe, Youngjun, 2019. "Cross-entropy based importance sampling for stochastic simulation models," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Yu, Weichao & Huang, Weihe & Wen, Kai & Zhang, Jie & Liu, Hongfei & Wang, Kun & Gong, Jing & Qu, Chunxu, 2021. "Subset simulation-based reliability analysis of the corroding natural gas pipeline," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Yu, Weichao & Huang, Weihe & Wen, Yunhao & Li, Yichen & Liu, Hongfei & Wen, Kai & Gong, Jing & Lu, Yanan, 2021. "An integrated gas supply reliability evaluation method of the large-scale and complex natural gas pipeline network based on demand-side analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    11. An Li & Feng Jin & Yuan Li & Wen Lan & Pan Liu & Zhifeng Yu & Kai Wen, 2024. "A Reliability Assessment Method for Natural Gas Pipelines with Corroded Defects That Considers Detection Cycles," Energies, MDPI, vol. 17(14), pages 1-15, July.
    12. Li, Mingyang & Wang, Zequn, 2022. "LSTM-augmented deep networks for time-variant reliability assessment of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Keshtegar, Behrooz & Chakraborty, Souvik, 2018. "Dynamical accelerated performance measure approach for efficient reliability-based design optimization with highly nonlinear probabilistic constraints," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 69-83.
    14. Mohamed El Amine Ben Seghier & Panagiotis Spyridis & Jafar Jafari-Asl & Sima Ohadi & Xinhong Li, 2022. "Comparative Study on the Efficiency of Simulation and Meta-Model-Based Monte Carlo Techniques for Accurate Reliability Analysis of Corroded Pipelines," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    15. Hu, Yingshi & Lu, Zhenzhou & Jiang, Xia & Wei, Ning & Zhou, Changcong, 2021. "Time-dependent structural system reliability analysis model and its efficiency solution," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhan, Hongyou & Xiao, Ning-Cong & Ji, Yuxiang, 2022. "An adaptive parallel learning dependent Kriging model for small failure probability problems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Roy, Atin & Chakraborty, Subrata, 2022. "Reliability analysis of structures by a three-stage sequential sampling based adaptive support vector regression model," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Menz, Morgane & Gogu, Christian & Dubreuil, Sylvain & Bartoli, Nathalie & Morio, Jérôme, 2020. "Adaptive coupling of reduced basis modeling and Kriging based active learning methods for reliability analyses," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    4. Chen, Jun-Yu & Feng, Yun-Wen & Teng, Da & Lu, Cheng & Fei, Cheng-Wei, 2022. "Support vector machine-based similarity selection method for structural transient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Wang, Tianzhe & Chen, Zequan & Li, Guofa & He, Jialong & Liu, Chao & Du, Xuejiao, 2024. "A novel method for high-dimensional reliability analysis based on activity score and adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    8. He, Wanxin & Wang, Yiyuan & Li, Gang & Zhou, Jinhang, 2024. "A novel maximum entropy method based on the B-spline theory and the low-discrepancy sequence for complex probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    10. Chengning Zhou & Ning-Cong Xiao & Ming J Zuo & Xiaoxu Huang, 2020. "AK-PDF: An active learning method combining kriging and probability density function for efficient reliability analysis," Journal of Risk and Reliability, , vol. 234(3), pages 536-549, June.
    11. Bolin Liu & Liyang Xie, 2020. "An Improved Structural Reliability Analysis Method Based on Local Approximation and Parallelization," Mathematics, MDPI, vol. 8(2), pages 1-13, February.
    12. Wang, Jiaqi & Zhang, Limao & Yang, Hui & Liu, Huabei & Skibniewski, Mirosław J., 2024. "Dynamic reliability analysis of Aerial Building Machine under extreme wind loads using improved QBDC-based active learning," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    13. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2020. "Application of adaptive surrogate models in time-variant fatigue reliability assessment of welded joints with surface cracks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    14. Zhang, Yang & Xu, Jun & Gardoni, Paolo, 2024. "A loading contribution degree analysis-based strategy for time-variant reliability analysis of structures under multiple loading stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
    16. Wang, Zeyu & Shafieezadeh, Abdollah, 2019. "REAK: Reliability analysis through Error rate-based Adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 33-45.
    17. Keshtegar, Behrooz & Chakraborty, Subrata, 2018. "An efficient-robust structural reliability method by adaptive finite-step length based on Armijo line search," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 195-206.
    18. Ameryan, Ala & Ghalehnovi, Mansour & Rashki, Mohsen, 2022. "AK-SESC: a novel reliability procedure based on the integration of active learning kriging and sequential space conversion method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    19. Li, Peiping & Wang, Yu, 2022. "An active learning reliability analysis method using adaptive Bayesian compressive sensing and Monte Carlo simulation (ABCS-MCS)," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    20. Keshtegar, Behrooz & Kisi, Ozgur, 2018. "RM5Tree: Radial basis M5 model tree for accurate structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 49-61.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:199-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.