IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v176y2018icp1-12.html
   My bibliography  Save this article

A flexible distribution and its application in reliability engineering

Author

Listed:
  • Zhao, Yan-Gang
  • Zhang, Xuan-Yi
  • Lu, Zhao-Hui

Abstract

Probability distributions of random variables are necessary for reliability evaluation. Generally, probability distributions are determined using one or two parameters evaluated from the mean and standard deviation of statistical data. However, these distributions are not sufficiently flexible to represent the skewness and kurtosis of data. This study therefore proposes a probability distribution based on the cubic normal transformation, whose parameters are determined using the skewness and kurtosis, as well as the mean and standard deviation of available data. This distribution is categorized into six different types based on different combinations of skewness and kurtosis. The boundaries of each type are identified, and the completeness of each type is proved. The cubic normal distribution is demonstrated to provide significant flexibility, and its applicable range covers a large area in the skewness–kurtosis plane, thus enabling it to approximate well-known distributions. The distribution is then applied in reliability engineering: simulating distributions of statistical data, calculating fourth-moment reliability index, finding optimal inspection intervals for condition-based maintenance system, and assessing the influence of input uncertainties on the whole output of a system. Several examples are presented to demonstrate the accuracy and efficacy of the distribution in the above-mentioned reliability engineering practices.

Suggested Citation

  • Zhao, Yan-Gang & Zhang, Xuan-Yi & Lu, Zhao-Hui, 2018. "A flexible distribution and its application in reliability engineering," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 1-12.
  • Handle: RePEc:eee:reensy:v:176:y:2018:i:c:p:1-12
    DOI: 10.1016/j.ress.2018.03.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017311754
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.03.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Leigang & Lu, Zhenzhou & Cheng, Lei & Fan, Chongqing, 2014. "A new method for evaluating Borgonovo moment-independent importance measure with its application in an aircraft structure," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 163-175.
    2. Allen Fleishman, 1978. "A method for simulating non-normal distributions," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 521-532, December.
    3. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    4. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    5. Soliman, Ahmed A. & Abd-Ellah, Ahmed H. & Abou-Elheggag, Naser A. & Ahmed, Essam A., 2012. "Modified Weibull model: A Bayes study using MCMC approach based on progressive censoring data," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 48-57.
    6. Cheng, Tianjin & Pandey, Mahesh D. & van der Weide, J.A.M., 2012. "The probability distribution of maintenance cost of a system affected by the gamma process of degradation: Finite time solution," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 65-76.
    7. Plischke, Elmar & Borgonovo, Emanuele & Smith, Curtis L., 2013. "Global sensitivity measures from given data," European Journal of Operational Research, Elsevier, vol. 226(3), pages 536-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Long-Wen & Dang, Chao & Zhao, Yan-Gang, 2023. "An efficient method for accessing structural reliability indexes via power transformation family," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Peña-Ramírez, Fernando A. & Guerra, Renata Rojas & Canterle, Diego Ramos & Cordeiro, Gauss M., 2020. "The logistic Nadarajah–Haghighi distribution and its associated regression model for reliability applications," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Zhang, Xuan-Yi & Lu, Zhao-Hui & Wu, Shi-Yu & Zhao, Yan-Gang, 2021. "An Efficient Method for Time-Variant Reliability including Finite Element Analysis," Reliability Engineering and System Safety, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    2. López-Benito, Alfredo & Bolado-Lavín, Ricardo, 2017. "A case study on global sensitivity analysis with dependent inputs: The natural gas transmission model," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 11-21.
    3. Yun, Wanying & Lu, Zhenzhou & Jiang, Xian, 2019. "An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 174-182.
    4. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    5. Derennes, Pierre & Morio, Jérôme & Simatos, Florian, 2021. "Simultaneous estimation of complementary moment independent and reliability-oriented sensitivity measures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 721-737.
    6. Cheng, Lei & Lu, Zhenzhou & Zhang, Leigang, 2015. "Application of Rejection Sampling based methodology to variance based parametric sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 9-18.
    7. Derennes, Pierre & Morio, Jérôme & Simatos, Florian, 2019. "A nonparametric importance sampling estimator for moment independent importance measures," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 3-16.
    8. Kucherenko, Sergei & Song, Shufang & Wang, Lu, 2019. "Quantile based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 35-48.
    9. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    10. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    11. Stefano Cucurachi & Carlos Felipe Blanco & Bernhard Steubing & Reinout Heijungs, 2022. "Implementation of uncertainty analysis and moment‐independent global sensitivity analysis for full‐scale life cycle assessment models," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 374-391, April.
    12. Broto, Baptiste & Bachoc, François & Depecker, Marine & Martinez, Jean-Marc, 2019. "Sensitivity indices for independent groups of variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 19-31.
    13. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    14. Song, Xiaodong & Bryan, Brett A. & Almeida, Auro C. & Paul, Keryn I. & Zhao, Gang & Ren, Yin, 2013. "Time-dependent sensitivity of a process-based ecological model," Ecological Modelling, Elsevier, vol. 265(C), pages 114-123.
    15. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    16. Talebiyan, Hesam & Dueñas-Osorio, Leonardo, 2023. "Auctions for resource allocation and decentralized restoration of interdependent networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    17. Soha Saad & Florence Ossart & Jean Bigeon & Etienne Sourdille & Harold Gance, 2021. "Global Sensitivity Analysis Applied to Train Traffic Rescheduling: A Comparative Study," Energies, MDPI, vol. 14(19), pages 1-29, October.
    18. Liu, Xing & Ferrario, Elisa & Zio, Enrico, 2019. "Identifying resilient-important elements in interdependent critical infrastructures by sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 423-434.
    19. Hoseyni, Seyed Mohsen & Pourgol-Mohammad, Mohammad & Tehranifard, Ali Abbaspour & Yousefpour, Faramarz, 2014. "A systematic framework for effective uncertainty assessment of severe accident calculations; Hybrid qualitative and quantitative methodology," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 22-35.
    20. Bosetti, Valentina & Marangoni, Giacomo & Borgonovo, Emanuele & Diaz Anadon, Laura & Barron, Robert & McJeon, Haewon C. & Politis, Savvas & Friley, Paul, 2015. "Sensitivity to energy technology costs: A multi-model comparison analysis," Energy Policy, Elsevier, vol. 80(C), pages 244-263.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:176:y:2018:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.