IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v165y2017icp331-335.html
   My bibliography  Save this article

The effectiveness of adding cold standby redundancy to a coherent system at system and component levels

Author

Listed:
  • Eryilmaz, Serkan

Abstract

The effect of adding cold standby redundancy to a system at system and component levels provides a useful information in reliability design. For a series (parallel) system adding cold standby redundancy at the component (system) level yields longer system lifetime. In this paper, the effect of adding cold standby redundancy to a general coherent structure at system and component levels is studied. In particular, signature-based expressions for the survival function of the system after standby redundancy at system and component levels are obtained. Thus for a given coherent structure with known signature, the survival functions and mean time to failure of new systems can be easily calculated and comparisons can be done in terms of stochastic ordering, and mean time to failure ordering. As a case study, circular consecutive-k-out-of-n:G system which can be used to analyze activities in a nuclear accelerator is considered.

Suggested Citation

  • Eryilmaz, Serkan, 2017. "The effectiveness of adding cold standby redundancy to a coherent system at system and component levels," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 331-335.
  • Handle: RePEc:eee:reensy:v:165:y:2017:i:c:p:331-335
    DOI: 10.1016/j.ress.2017.04.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016309012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.04.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Serkan Eryilmaz, 2014. "A study on reliability of coherent systems equipped with a cold standby component," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(3), pages 349-359, April.
    2. Eryilmaz, Serkan, 2012. "On the mean residual life of a k-out-of-n:G system with a single cold standby component," European Journal of Operational Research, Elsevier, vol. 222(2), pages 273-277.
    3. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2014. "Optimal component loading in 1-out-of-N cold standby systems," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 58-64.
    4. Wang, Chaonan & Xing, Liudong & Amari, Suprasad V., 2012. "A fast approximation method for reliability analysis of cold-standby systems," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 119-126.
    5. Kundu, Pradip & Hazra, Nil Kamal & Nanda, Asok K., 2016. "Reliability study of a coherent system with single general standby component," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 25-33.
    6. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2013. "Cold-standby sequencing optimization considering mission cost," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 28-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis S. Triantafyllou, 2023. "Combined m -Consecutive- k -Out-of- n : F and Consecutive k c -Out-of- n : F Structures with Cold Standby Redundancy," Mathematics, MDPI, vol. 11(12), pages 1-13, June.
    2. Wang, Chaonan & Wang, Xiaolei & Xing, Liudong & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2021. "A Fast and Accurate Reliability Approximation Method for Heterogeneous Cold Standby Sparing Systems," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Luo, Chunling & Shen, Lijuan & Xu, Ancha, 2022. "Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    4. Davies, Katherine & Dembińska, Anna, 2019. "On the number of failed components in a k-out-of-n system upon system failure when the lifetimes are discretely distributed," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 47-61.
    5. Mohamed Kayid & Mashael A. Alshehri, 2023. "Stochastic Comparisons of Lifetimes of Used Standby Systems," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    6. Levitin, Gregory & Xing, Liudong & Dai, Yanshun, 2022. "Minimum cost replacement and maintenance scheduling in dual-dissimilar-unit standby systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    7. Zhao, Xian & Wang, Chen & Wang, Siqi, 2024. "Reliability analysis of multi-state balanced systems with standby components switching mechanism," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Zhu, Xiaojun & Balakrishnan, N., 2023. "Non-parametric inference based on reliability life-test of non-identical coherent systems with application to warranty time," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    9. Ioannis S. Triantafyllou, 2023. "An Archimedean Copulas-Based Approach for m -Consecutive- k -Out-of- n : F Systems with Exchangeable Components," Stats, MDPI, vol. 6(4), pages 1-12, October.
    10. Achintya Roy & Nitin Gupta, 2020. "Reliability of a coherent system equipped with two cold standby components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(6), pages 677-697, August.
    11. Torrado, Nuria & Arriaza, Antonio & Navarro, Jorge, 2021. "A study on multi-level redundancy allocation in coherent systems formed by modules," Reliability Engineering and System Safety, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ardakan, Mostafa Abouei & Amini, Hanieh & Juybari, Mohammad N., 2022. "Prescheduled switching time: A new strategy for systems with standby components," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    2. Jia, Xiang & Chen, Hao & Cheng, Zhijun & Guo, Bo, 2016. "A comparison between two switching policies for two-unit standby system," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 109-118.
    3. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Heterogeneous 1-out-of-N warm standby systems with online checkpointing," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 127-136.
    4. Longlong Liu & Xiaochuan Ai & Jun Wu, 2024. "Reliability and Residual Life of Cold Standby Systems," Mathematics, MDPI, vol. 12(10), pages 1-22, May.
    5. Kim, Heungseob, 2018. "Maximization of system reliability with the consideration of component sequencing," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 64-72.
    6. Mohamed Kayid & Mashael A. Alshehri, 2023. "Stochastic Comparisons of Lifetimes of Used Standby Systems," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    7. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2014. "Optimal component loading in 1-out-of-N cold standby systems," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 58-64.
    8. Valaei, M.R. & Behnamian, J., 2017. "Allocation and sequencing in 1-out-of-N heterogeneous cold-standby systems: Multi-objective harmony search with dynamic parameters tuning," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 78-86.
    9. Li, Chen & Li, Xiaohu, 2023. "On k-out-of-n systems with homogeneous components and one independent cold standby redundancy," Statistics & Probability Letters, Elsevier, vol. 203(C).
    10. Wang, Chaonan & Wang, Xiaolei & Xing, Liudong & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2021. "A Fast and Accurate Reliability Approximation Method for Heterogeneous Cold Standby Sparing Systems," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    11. Mansour Shrahili & Mohamed Kayid, 2023. "Stochastic Orderings of the Idle Time of Inactive Standby Systems," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    12. Amirhossain Chambari & Javad Sadeghi & Fakhri Bakhtiari & Reza Jahangard, 2016. "A note on a reliability redundancy allocation problem using a tuned parameter genetic algorithm," OPSEARCH, Springer;Operational Research Society of India, vol. 53(2), pages 426-442, June.
    13. Rodríguez, Joanna & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2015. "Failure modeling of an electrical N-component framework by the non-stationary Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 126-133.
    14. Gupta, Nitin & Misra, Neeraj & Kumar, Somesh, 2015. "Stochastic comparisons of residual lifetimes and inactivity times of coherent systems with dependent identically distributed components," European Journal of Operational Research, Elsevier, vol. 240(2), pages 425-430.
    15. Zarezadeh, S. & Asadi, M. & Balakrishnan, N., 2014. "Dynamic network reliability modeling under nonhomogeneous Poisson processes," European Journal of Operational Research, Elsevier, vol. 232(3), pages 561-571.
    16. Jørgen Vitting Andersen & Roy Cerqueti & Giulia Rotundo, 2017. "Rational expectations and stochastic systems," Documents de travail du Centre d'Economie de la Sorbonne 17060, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Oct 2019.
    17. Jia, Heping & Ding, Yi & Peng, Rui & Liu, Hanlin & Song, Yonghua, 2020. "Reliability assessment and activation sequence optimization of non-repairable multi-state generation systems considering warm standby," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    18. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimizing uploading and downloading pace distribution in system with two non-identical storage units," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    19. Chen, Wu-Lin & Wang, Kuo-Hsiung, 2018. "Reliability analysis of a retrial machine repair problem with warm standbys and a single server with N-policy," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 476-486.
    20. Jorgen Vitting Andersen & Roy Cerqueti & Jessica Riccioni, 2021. "Rational expectations as a tool for predicting failure of weighted k-out-of-n reliability systems," Papers 2112.10672, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:165:y:2017:i:c:p:331-335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.