IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v160y2017icp162-173.html
   My bibliography  Save this article

Quantitative occupational risk model: Single hazard

Author

Listed:
  • Papazoglou, I.A.
  • Aneziris, O.N.
  • Bellamy, L.J.
  • Ale, B.J.M.
  • Oh, J.

Abstract

A model for the quantification of occupational risk of a worker exposed to a single hazard is presented. The model connects the working conditions and worker behaviour to the probability of an accident resulting into one of three types of consequence: recoverable injury, permanent injury and death. Working conditions and safety barriers in place to reduce the likelihood of an accident are included. Logical connections are modelled through an influence diagram. Quantification of the model is based on two sources of information: a) number of accidents observed over a period of time and b) assessment of exposure data of activities and working conditions over the same period of time and the same working population. Effectiveness of risk reducing measures affecting the working conditions, worker behaviour and/or safety barriers can be quantified through the effect of these measures on occupational risk.

Suggested Citation

  • Papazoglou, I.A. & Aneziris, O.N. & Bellamy, L.J. & Ale, B.J.M. & Oh, J., 2017. "Quantitative occupational risk model: Single hazard," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 162-173.
  • Handle: RePEc:eee:reensy:v:160:y:2017:i:c:p:162-173
    DOI: 10.1016/j.ress.2016.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201630998X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Guozheng & Khan, Faisal & Wang, Hangzhou & Leighton, Shelly & Yuan, Zhi & Liu, Hanwen, 2016. "Dynamic occupational risk model for offshore operations in harsh environments," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 58-64.
    2. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2013. "Risk-based design of process systems using discrete-time Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 5-17.
    3. TRONTIN, Christian & BEJEAN, Sophie, 2001. "Prevention of occupational injuries : moral hazard and complex agency relationships," LATEC - Document de travail - Economie (1991-2003) 2001-07, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    4. Papazoglou, Ioannis A. & Ale, Ben J.M., 2007. "A logical model for quantification of occupational risk," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 785-803.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Papazoglou, I.A. & Aneziris, O.N. & Bellamy, L.J. & Ale, B.J.M. & Oh, J., 2017. "Multi-hazard multi-person quantitative occupational risk model and risk management," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 310-326.
    2. Zhang, Xiaoge & Mahadevan, Sankaran, 2021. "Bayesian network modeling of accident investigation reports for aviation safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papazoglou, I.A. & Aneziris, O.N. & Bellamy, L.J. & Ale, B.J.M. & Oh, J., 2017. "Multi-hazard multi-person quantitative occupational risk model and risk management," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 310-326.
    2. Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
    3. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    4. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    5. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    6. Ale, B.J.M. & Bellamy, L.J. & Baksteen, H. & Damen, M. & Goossens, L.H.J. & Hale, A.R. & Mud, M. & Oh, J. & Papazoglou, I.A. & Whiston, J.Y., 2008. "Accidents in the construction industry in the Netherlands: An analysis of accident reports using Storybuilder," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1523-1533.
    7. Landucci, Gabriele & Argenti, Francesca & Tugnoli, Alessandro & Cozzani, Valerio, 2015. "Quantitative assessment of safety barrier performance in the prevention of domino scenarios triggered by fire," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 30-43.
    8. Guo, Qingjun & Amin, Shohel & Hao, Qianwen & Haas, Olivier, 2020. "Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    9. Panagiotis K. Marhavilas & Michael G. Tegas & Georgios K. Koulinas & Dimitrios E. Koulouriotis, 2020. "A Joint Stochastic/Deterministic Process with Multi-Objective Decision Making Risk-Assessment Framework for Sustainable Constructions Engineering Projects—A Case Study," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    10. Adnan Sarwar & Faisal Khan & Majeed Abimbola & Lesley James, 2018. "Resilience Analysis of a Remote Offshore Oil and Gas Facility for a Potential Hydrocarbon Release," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1601-1617, August.
    11. Noroozi, Alireza & Khakzad, Nima & Khan, Faisal & MacKinnon, Scott & Abbassi, Rouzbeh, 2013. "The role of human error in risk analysis: Application to pre- and post-maintenance procedures of process facilities," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 251-258.
    12. Mi, Jinhua & Li, Yan-Feng & Yang, Yuan-Jian & Peng, Weiwen & Huang, Hong-Zhong, 2016. "Reliability assessment of complex electromechanical systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 1-15.
    13. Aalirezaei, Armin & Kabir, Dr. Golam & Khan, Md Saiful Arif, 2023. "Dynamic predictive analysis of the consequences of gas pipeline failures using a Bayesian network," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
    14. Marhavilas, P.K. & Koulouriotis, D.E. & Spartalis, S.H., 2013. "Harmonic analysis of occupational-accident time-series as a part of the quantified risk evaluation in worksites: Application on electric power industry and construction sector," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 8-25.
    15. Raoni, Rafael & Secchi, Argimiro R., 2019. "Procedures to model and solve probabilistic dynamic system problems," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    16. Chemweno, Peter & Pintelon, Liliane & Van Horenbeek, Adriaan & Muchiri, Peter, 2015. "Development of a risk assessment selection methodology for asset maintenance decision making: An analytic network process (ANP) approach," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 663-676.
    17. Ioannis A. Papazoglou & Olga Aneziris & Linda Bellamy & B. J. M. Ale & Joy I. H. Oh, 2015. "Uncertainty Assessment in the Quantification of Risk Rates of Occupational Accidents," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1536-1561, August.
    18. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    19. Liu, Jintao & Schmid, Felix & Li, Keping & Zheng, Wei, 2021. "A knowledge graph-based approach for exploring railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    20. Langdalen, Henrik & Abrahamsen, Eirik Bjorheim & Abrahamsen, HÃ¥kon Bjorheim, 2020. "A New Framework To Idenitfy And Assess Hidden Assumptions In The Background Knowledge Of A Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:160:y:2017:i:c:p:162-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.