IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v147y2016icp84-92.html
   My bibliography  Save this article

An accelerated test method of luminous flux depreciation for LED luminaires and lamps

Author

Listed:
  • Qian, C.
  • Fan, X.J.
  • Fan, J.J.
  • Yuan, C.A.
  • Zhang, G.Q.

Abstract

Light Emitting Diode (LED) luminaires and lamps are energy-saving and environmental friendly alternatives to traditional lighting products. However, current luminous flux depreciation test at luminaire and lamp level requires a minimum of 6000h testing, which is even longer than the product development cycle time. This paper develops an accelerated test method for luminous flux depreciation to reduce the test time within 2000h at an elevated temperature. The method is based on lumen maintenance boundary curve, obtained from a collection of LED source lumen depreciation data, known as LM-80 data. The exponential decay model and Arrhenius acceleration relationship are used to determine the new threshold of lumen maintenance and acceleration factor. The proposed method has been verified by a number of simulation studies and experimental data for a wide range of LED luminaire and lamp types from both internal and external experiments. The qualification results obtained by the accelerated test method agree well with traditional 6000h tests.

Suggested Citation

  • Qian, C. & Fan, X.J. & Fan, J.J. & Yuan, C.A. & Zhang, G.Q., 2016. "An accelerated test method of luminous flux depreciation for LED luminaires and lamps," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 84-92.
  • Handle: RePEc:eee:reensy:v:147:y:2016:i:c:p:84-92
    DOI: 10.1016/j.ress.2015.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015003361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiaolin & Balakrishnan, Narayanaswamy & Guo, Bo, 2014. "Residual life estimation based on a generalized Wiener degradation process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 13-23.
    2. Han, David, 2015. "Time and cost constrained optimal designs of constant-stress and step-stress accelerated life tests," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 1-14.
    3. Fan, Jiajie & Yung, Kam-Chuen & Pecht, Michael, 2014. "Prognostics of lumen maintenance for High power white light emitting diodes using a nonlinear filter-based approach," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 63-72.
    4. Oh, Hyunseok & Choi, Seunghyuk & Kim, Keunsu & Youn, Byeng D. & Pecht, Michael, 2015. "An empirical model to describe performance degradation for warranty abuse detection in portable electronics," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 92-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lazarov, Boyan S. & Sigmund, Ole & Meyer, Knud E. & Alexandersen, Joe, 2018. "Experimental validation of additively manufactured optimized shapes for passive cooling," Applied Energy, Elsevier, vol. 226(C), pages 330-339.
    2. Ikuzwe, Alice & Ye, Xianming & Xia, Xiaohua, 2020. "Energy-maintenance optimization for retrofitted lighting system incorporating luminous flux degradation to enhance visual comfort," Applied Energy, Elsevier, vol. 261(C).
    3. Lu, Yaohui & Zheng, Heyan & Zeng, Jing & Chen, Tianli & Wu, Pingbo, 2019. "Fatigue life reliability evaluation in a high-speed train bogie frame using accelerated life and numerical test," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 221-232.
    4. Sun, Bo & Fan, Xuejun & van Driel, Willem & Cui, Chengqiang & Zhang, Guoqi, 2018. "A stochastic process based reliability prediction method for LED driver," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 140-146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Tianyu Liu & Zhengqiang Pan & Quan Sun & Jing Feng & Yanzhen Tang, 2017. "Residual useful life estimation for products with two performance characteristics based on a bivariate Wiener process," Journal of Risk and Reliability, , vol. 231(1), pages 69-80, February.
    3. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Huang, Jianlin & Golubović, Dušan S & Koh, Sau & Yang, Daoguo & Li, Xiupeng & Fan, Xuejun & Zhang, G.Q., 2016. "Lumen degradation modeling of white-light LEDs in step stress accelerated degradation test," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 152-159.
    6. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    7. XiaoFei, Lu & Min, Liu, 2014. "Hazard rate function in dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 50-60.
    8. Yan, Bingxin & Ma, Xiaobing & Yang, Li & Wang, Han & Wu, Tianyi, 2020. "A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    9. Cheng, Yao & Liao, Haitao & Huang, Zhiyi, 2021. "Optimal degradation-based hybrid double-stage acceptance sampling plan for a heterogeneous product," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    10. Dan Xu & Jiaolan He & Zhou Yang, 2022. "Reliability prediction based on Birnbaum–Saunders model and its application to smart meter," Annals of Operations Research, Springer, vol. 312(1), pages 519-532, May.
    11. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Integrated optimization of test case selection and sequencing for reliability testing of the mainboard of Internet backbone routers," European Journal of Operational Research, Elsevier, vol. 299(1), pages 183-194.
    12. Rocco Sanseverino, Claudio M. & Ramirez-Marquez, José Emmanuel, 2014. "Uncertainty propagation and sensitivity analysis in system reliability assessment via unscented transformation," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 176-185.
    13. Kim, Seong-Joon & Mun, Byeong Min & Bae, Suk Joo, 2019. "A cost-driven reliability demonstration plan based on accelerated degradation tests," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 226-239.
    14. Lee, Joohyun & Kwak, Jaewook & Lee, Hyang-Won & Shroff, Ness B., 2018. "Finding minimum node separators: A Markov chain Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 225-235.
    15. Le Liu & Xiao-Yang Li & Enrico Zio & Rui Kang & Tong-Min Jiang, 2017. "Model Uncertainty in Accelerated Degradation Testing Analysis," Post-Print hal-01652218, HAL.
    16. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    17. Tong Peng & Liu Chunling, 2020. "Designing differential service strategy for two-dimensional warranty based on warranty claim data under consumer-side modularisation," Journal of Risk and Reliability, , vol. 234(3), pages 550-561, June.
    18. Rocchetta, Roberto & Zhan, Zhouzhao & van Driel, Willem Dirk & Di Bucchianico, Alessandro, 2024. "Uncertainty analysis and interval prediction of LEDs lifetimes," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    19. Zhang, Fode & Ng, Hon Keung Tony & Shi, Yimin, 2020. "Mis-specification analysis of Wiener degradation models by using f-divergence with outliers," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    20. Peña-Ramírez, Fernando A. & Guerra, Renata Rojas & Canterle, Diego Ramos & Cordeiro, Gauss M., 2020. "The logistic Nadarajah–Haghighi distribution and its associated regression model for reliability applications," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:147:y:2016:i:c:p:84-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.