IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v141y2015icp10-21.html
   My bibliography  Save this article

Modelling Vessel Traffic Service to understand resilience in everyday operations

Author

Listed:
  • Praetorius, Gesa
  • Hollnagel, Erik
  • Dahlman, Joakim

Abstract

Vessel Traffic Service (VTS) is a service to promote traffic fluency and safety in the entrance to ports. This article׳s purpose has been to explore everyday operations of the VTS system to gain insights in how it contributes to safe and efficient traffic movements. Interviews, focus groups and an observation have been conducted to collect data about everyday operations, as well as to grasp how the VTS system adapts to changing operational conditions. The results show that work within the VTS domain is highly complex and that the two systems modelled realise their services vastly differently, which in turn affects the systems׳ ability to monitor, respond and anticipate. This is of great importance to consider whenever changes are planned and implemented within the VTS domain. Only if everyday operations are properly analysed and understood, it can be estimated how alterations to technology and organisation will affect the overall system performance.

Suggested Citation

  • Praetorius, Gesa & Hollnagel, Erik & Dahlman, Joakim, 2015. "Modelling Vessel Traffic Service to understand resilience in everyday operations," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 10-21.
  • Handle: RePEc:eee:reensy:v:141:y:2015:i:c:p:10-21
    DOI: 10.1016/j.ress.2015.03.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015000861
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.03.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    2. Belmonte, Fabien & Schön, Walter & Heurley, Laurent & Capel, Robert, 2011. "Interdisciplinary safety analysis of complex socio-technological systems based on the functional resonance accident model: An application to railway trafficsupervision," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 237-249.
    3. Herrera, I.A. & Woltjer, R., 2010. "Comparing a multi-linear (STEP) and systemic (FRAM) method for accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1269-1275.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wahl, Aud & Kongsvik, Trond & Antonsen, Stian, 2020. "Balancing Safety I and Safety II: Learning to manage performance variability at sea using simulator-based training," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Josué França & Antônio Oliveira & Luciana Silva & Pär Karlsson, 2023. "Analyzing non-technical skills in the sharp end of facilities/utilities operations in onshore and offshore O&G process plants," Environment Systems and Decisions, Springer, vol. 43(2), pages 251-264, June.
    3. Patriarca, Riccardo & Falegnami, Andrea & Costantino, Francesco & Bilotta, Federico, 2018. "Resilience engineering for socio-technical risk analysis: Application in neuro-surgery," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 321-335.
    4. Steen, Riana & Ferreira, Pedro, 2020. "Resilient flood-risk management at the municipal level through the lens of the Functional Resonance Analysis Model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Dui, Hongyan & Zheng, Xiaoqian & Wu, Shaomin, 2021. "Resilience analysis of maritime transportation systems based on importance measures," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Oscar Hernán Ramírez-Agudelo & Corinna Köpke & Yann Guillouet & Jan Schäfer-Frey & Evelin Engler & Jennifer Mielniczek & Frank Sill Torres, 2021. "An Expert-Driven Probabilistic Assessment of the Safety and Security of Offshore Wind Farms," Energies, MDPI, vol. 14(17), pages 1-18, September.
    7. Patriarca, Riccardo & Bergström, Johan & Di Gravio, Giulio, 2017. "Defining the functional resonance analysis space: Combining Abstraction Hierarchy and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 34-46.
    8. Svajone Bekesiene & Rosita Kanapeckaitė & Rasa Smaliukienė & Olga Navickienė & Ieva Meidutė-Kavaliauskienė & Ramutė Vaičaitienė, 2022. "Sustainable Reservists’ Services: The Effect of Resilience on the Intention to Remain in the Active Military Reserve Using a Parallel Mediating Model," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    9. Adhita, I Gde Manik Sukanegara & Fuchi, Masaki & Konishi, Tsukasa & Fujimoto, Shoji, 2023. "Ship navigation from a Safety-II perspective: A case study of training-ship operation in coastal area," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Hossain, Niamat Ullah Ibne & Nur, Farjana & Hosseini, Seyedmohsen & Jaradat, Raed & Marufuzzaman, Mohammad & Puryear, Stephen M., 2019. "A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 378-396.
    11. Gino J. Lim & Jaeyoung Cho & Selim Bora & Taofeek Biobaku & Hamid Parsaei, 2018. "Models and computational algorithms for maritime risk analysis: a review," Annals of Operations Research, Springer, vol. 271(2), pages 765-786, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patriarca, Riccardo & Bergström, Johan & Di Gravio, Giulio, 2017. "Defining the functional resonance analysis space: Combining Abstraction Hierarchy and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 34-46.
    2. Yoon, Young Sik & Ham, Dong-Han & Yoon, Wan Chul, 2016. "Application of activity theory to analysis of human-related accidents: Method and case studies," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 22-34.
    3. Steen, Riana & Ferreira, Pedro, 2020. "Resilient flood-risk management at the municipal level through the lens of the Functional Resonance Analysis Model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Rahman, Shaikh Moksadur, 2020. "Relationship between Job Satisfaction and Turnover Intention: Evidence from Bangladesh," Asian Business Review, Asian Business Consortium, vol. 10(2), pages 99-108.
    5. Wang Kai, 2019. "Towards a Taxonomy of Idea Generation Techniques," Foundations of Management, Sciendo, vol. 11(1), pages 65-80, January.
    6. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    7. Bevilacqua, Maurizio & Ciarapica, Filippo Emanuele, 2018. "Human factor risk management in the process industry: A case study," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 149-159.
    8. Naveena Prakasam & Louisa Huxtable-Thomas, 2021. "Reddit: Affordances as an Enabler for Shifting Loyalties," Information Systems Frontiers, Springer, vol. 23(3), pages 723-751, June.
    9. Colin Jerolmack & Alexandra K. Murphy, 2019. "The Ethical Dilemmas and Social Scientific Trade-offs of Masking in Ethnography," Sociological Methods & Research, , vol. 48(4), pages 801-827, November.
    10. Valeriy Makarov & Albert Bakhtizin, 2014. "The Estimation Of The Regions’ Efficiency Of The Russian Federation Including The Intellectual Capital, The Characteristics Of Readiness For Innovation, Level Of Well-Being, And Quality Of Life," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 9-30.
    11. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    12. Kristine Edgar Danielyan & Samvel Grigoriy Chailyan, 2019. "Delineation of Effectors Impact on The Human Brain Derived Phosphoribosylpyrophosphate Synthetase-1 Activity," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 24(1), pages 17918-17926, December.
    13. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    14. Mohammad AL-Zoubi, 2018. "The Role of Technology, Organization, and Environment Factors in Enterprise Resource Planning Implementation Success in Jordan," International Business Research, Canadian Center of Science and Education, vol. 11(8), pages 48-65, August.
    15. Damgaard, Mette Trier & Nielsen, Helena Skyt, 2018. "Nudging in education," Economics of Education Review, Elsevier, vol. 64(C), pages 313-342.
    16. Nicole D. Sintov & P. Wesley Schultz, 2017. "Adjustable Green Defaults Can Help Make Smart Homes More Sustainable," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    17. Hwang, ShinYoung & Kim Seongcheol, 2017. "What triggers the use of mIM service provider’s sequel O2O service extensions?," 14th ITS Asia-Pacific Regional Conference, Kyoto 2017: Mapping ICT into Transformation for the Next Information Society 168494, International Telecommunications Society (ITS).
    18. Sana Sadiq & Khadija Anasse & Najib Slimani, 2022. "The impact of mobile phones on high school students: connecting the research dots," Technium Social Sciences Journal, Technium Science, vol. 30(1), pages 252-270, April.
    19. Maude Hasbi & Antoine Dubus, 2019. "Determinants of Mobile Broadband Use in Developing Economies: Evidence from Sub-Saharan Africa," Working Papers hal-02264651, HAL.
    20. Jascha-Alexander Koch & Michael Siering, 2019. "The recipe of successful crowdfunding campaigns," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(4), pages 661-679, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:141:y:2015:i:c:p:10-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.