IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v130y2014icp149-158.html
   My bibliography  Save this article

Markovian agents models for wireless sensor networks deployed in environmental protection

Author

Listed:
  • Cerotti, Davide
  • Gribaudo, Marco
  • Bobbio, Andrea

Abstract

Wireless sensor networks (WSNs) are gaining popularity as distributed monitoring systems in safety critical applications, when the location to be controlled may be dangerous for a human operator or difficult to access. Fire is one of the major thread in urban as well as in open environments, and WSNs are receiving increasing attention as a mean to build effective and timely fire protection systems. The present paper presents a novel analytical technique for the study of the propagation of a fire in a wide open area and the interaction with a WSN deployed to monitor the outbreak of the fire and to send a warning signal to a base station.

Suggested Citation

  • Cerotti, Davide & Gribaudo, Marco & Bobbio, Andrea, 2014. "Markovian agents models for wireless sensor networks deployed in environmental protection," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 149-158.
  • Handle: RePEc:eee:reensy:v:130:y:2014:i:c:p:149-158
    DOI: 10.1016/j.ress.2014.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014001203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    2. Guanquan, Chu & Jinhui, Wang, 2012. "Study on probability distribution of fire scenarios in risk assessment to emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 24-32.
    3. Tugnoli, Alessandro & Cozzani, Valerio & Di Padova, Annamaria & Barbaresi, Tiziana & Tallone, Fabrizio, 2012. "Mitigation of fire damage and escalation by fireproofing: A risk-based strategy," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 25-35.
    4. Jung, Woo Sik & Lee, Yoon-Hwan & Yang, Joon-Eon, 2009. "Development of a new quantification method for a fire PSA," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1650-1657.
    5. Lambert, James H. & Farrington, Mark W., 2007. "Cost–benefit functions for the allocation of security sensors for air contaminants," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 930-946.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bistouni, Fathollah & Jahanshahi, Mohsen, 2015. "Evaluating failure rate of fault-tolerant multistage interconnection networks using Weibull life distribution," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 128-146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garcez, Thalles Vitelli & de Almeida, Adiel Teixeira, 2014. "A risk measurement tool for an underground electricity distribution system considering the consequences and uncertainties of manhole events," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 68-80.
    2. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    3. Sellevåg, Stig Rune, 2021. "Changes in inoperability for interdependent industry sectors in Norway from 2012 to 2017," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).
    4. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    6. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. Shihab Uddin & Qing Lu & Hung Nguyen, 2021. "Truck Impact on Buried Water Pipes in Interdependent Water and Road Infrastructures," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    9. Moglen, Rachel L. & Barth, Julius & Gupta, Shagun & Kawai, Eiji & Klise, Katherine & Leibowicz, Benjamin D., 2023. "A nexus approach to infrastructure resilience planning under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    11. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    12. Dylan Sanderson & Sabarethinam Kameshwar & Nathanael Rosenheim & Daniel Cox, 2021. "Deaggregation of multi-hazard damages, losses, risks, and connectivity: an application to the joint seismic-tsunami hazard at Seaside, Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1821-1847, November.
    13. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    14. Monsalve, Mauricio & de la Llera, Juan Carlos, 2019. "Data-driven estimation of interdependencies and restoration of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 167-180.
    15. Yu, Juanya & Sharma, Neetesh & Gardoni, Paolo, 2024. "Functional connectivity analysis for modeling flow in infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    16. Heracleous, Constantinos & Kolios, Panayiotis & Panayiotou, Christos G. & Ellinas, Georgios & Polycarpou, Marios M., 2017. "Hybrid systems modeling for critical infrastructures interdependency analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 89-101.
    17. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    18. George-Williams, Hindolo & Patelli, Edoardo, 2017. "Efficient availability assessment of reconfigurable multi-state systems with interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 431-444.
    19. Thompson, James R. & Frezza, Damon & Necioglu, Burhan & Cohen, Michael L. & Hoffman, Kenneth & Rosfjord, Kristine, 2019. "Interdependent Critical Infrastructure Model (ICIM): An agent-based model of power and water infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 144-165.
    20. Dubaniowski, Mateusz Iwo & Heinimann, Hans Rudolf, 2021. "Framework for modeling interdependencies between households, businesses, and infrastructure system, and their response to disruptions—application," Reliability Engineering and System Safety, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:130:y:2014:i:c:p:149-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.