IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v122y2014icp421-435.html
   My bibliography  Save this article

Expected dose and associated uncertainty and sensitivity analysis results for all scenario classes in the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada

Author

Listed:
  • Helton, J.C.
  • Hansen, C.W.
  • Sallaberry, C.J.

Abstract

Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. In support of this development and an associated license application to the U.S. Nuclear Regulatory Commission (NRC), the DOE completed an extensive performance assessment (PA) for the proposed YM repository in 2008. The conceptual structure and organization of the 2008 YM PA is based on decomposing the analysis into the following scenario classes: nominal, early waste package failure, early drip shield failure, igneous intrusive, igneous eruptive, seismic ground motion, and seismic fault displacement. This presentation describes how results obtained for the individual scenario classes are brought together in the determination of expected dose to the reasonably maximally exposed individual (RMEI) specified by the NRC in the regulatory requirements for the YM repository and presents associated uncertainty and sensitivity analysis results. The following topics are addressed: (i) determination of expected dose to the RMEI from all scenario classes, (ii) expected dose and uncertainty in expected dose to the RMEI for 0 to 20,000yr, (iii) expected dose and uncertainty in expected dose to the RMEI from for 0 to 106yr, (iv) justification for the decomposition procedure used to estimate expected dose to the RMEI from all scenario classes, and (v) effectiveness of individual barrier systems in reducing releases from the repository and thus dose to the RMEI. The present article is part of a special issue of Reliability Engineering and System Safety devoted to the 2008 YM PA; additional articles in the issue describe other aspects of the 2008 YM PA.

Suggested Citation

  • Helton, J.C. & Hansen, C.W. & Sallaberry, C.J., 2014. "Expected dose and associated uncertainty and sensitivity analysis results for all scenario classes in the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca ," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 421-435.
  • Handle: RePEc:eee:reensy:v:122:y:2014:i:c:p:421-435
    DOI: 10.1016/j.ress.2013.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013001816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helton, Jon C. & Sallaberry, Cedric J., 2009. "Conceptual basis for the definition and calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 677-698.
    2. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A critical discussion and practical recommendations on some issues relevant to the non-probabilistic treatment of uncertainty in engineering risk assessment," Post-Print hal-01652230, HAL.
    2. Cadini, F. & Gioletta, A. & Zio, E., 2015. "Improved metamodel-based importance sampling for the performance assessment of radioactive waste repositories," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 188-197.
    3. Edoardo Tosoni & Ahti Salo & Enrico Zio, 2018. "Scenario Analysis for the Safety Assessment of Nuclear Waste Repositories: A Critical Review," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 755-776, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helton, Jon C. & Johnson, Jay D. & Sallaberry, Cédric J., 2011. "Quantification of margins and uncertainties: Example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1014-1033.
    2. Zio, E. & Pedroni, N., 2010. "An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1300-1313.
    3. Swift, Peter N. & Hansen, Clifford W. & Helton, Jon C. & Howard, Robert L. & Kathryn Knowles, M. & MacKinnon, Robert J. & McNeish, Jerry A. & David Sevougian, S., 2014. "Summary discussion of the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 449-456.
    4. Helton, Jon C. & Hansen, Clifford W. & Sallaberry, Cédric J., 2012. "Uncertainty and sensitivity analysis in performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 44-63.
    5. Blatman, Géraud & Sudret, Bruno, 2010. "Efficient computation of global sensitivity indices using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1216-1229.
    6. Pilch, Martin & Trucano, Timothy G. & Helton, Jon C., 2011. "Ideas underlying the Quantification of Margins and Uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 965-975.
    7. Hansen, Clifford W. & Helton, Jon C. & Sallaberry, Cédric J., 2012. "Use of replicated Latin hypercube sampling to estimate sampling variance in uncertainty and sensitivity analysis results for the geologic disposal of radioactive waste," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 139-148.
    8. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    9. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    10. Helton, J.C. & Hansen, C.W. & Sallaberry, C.J., 2014. "Conceptual structure and computational organization of the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 223-248.
    11. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    12. Donghyeon Yoo & Jinhwan Park & Jaemin Moon & Changwan Kim, 2021. "Reliability-Based Design Optimization for Reducing the Performance Failure and Maximizing the Specific Energy of Lithium-Ion Batteries Considering Manufacturing Uncertainty of Porous Electrodes," Energies, MDPI, vol. 14(19), pages 1-15, September.
    13. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    14. Javier Urquizo & Carlos Calderón & Philip James, 2017. "Using a Local Framework Combining Principal Component Regression and Monte Carlo Simulation for Uncertainty and Sensitivity Analysis of a Domestic Energy Model in Sub-City Areas," Energies, MDPI, vol. 10(12), pages 1-22, December.
    15. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.
    16. Guo, Zehua & Dailey, Ryan & Feng, Tangtao & Zhou, Yukun & Sun, Zhongning & Corradini, Michael L & Wang, Jun, 2021. "Uncertainty analysis of ATF Cr-coated-Zircaloy on BWR in-vessel accident progression during a station blackout," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    17. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    18. Jingwen Song & Zhenzhou Lu & Pengfei Wei & Yanping Wang, 2015. "Global sensitivity analysis for model with random inputs characterized by probability-box," Journal of Risk and Reliability, , vol. 229(3), pages 237-253, June.
    19. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2017. "A long-term performance analysis of three different configurations for community-sized solar heating systems in high latitudes," Renewable Energy, Elsevier, vol. 113(C), pages 479-493.
    20. Auder, Benjamin & De Crecy, Agnès & Iooss, Bertrand & Marquès, Michel, 2012. "Screening and metamodeling of computer experiments with functional outputs. Application to thermal–hydraulic computations," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 122-131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:122:y:2014:i:c:p:421-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.