IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v120y2013icp163-176.html
   My bibliography  Save this article

Aircraft operational reliability—A model-based approach and a case study

Author

Listed:
  • Tiassou, Kossi
  • Kanoun, Karama
  • Kaâniche, Mohamed
  • Seguin, Christel
  • Papadopoulos, Chris

Abstract

The success of an aircraft mission is subject to the fulfillment of some operational requirements before and during each flight. As these requirements depend essentially on the aircraft system components and the mission profile, the effects of failures can be very severe if they are not anticipated. Hence, one should be able to assess the aircraft operational reliability with regard to its missions in order to be able to cope with failures. We address aircraft operational reliability modeling to support maintenance planning during the mission achievement. We develop a modeling approach, based on a meta-model that is used as a basis: (i) to structure the information needed to assess aircraft operational reliability and (ii) to build a stochastic model that can be tuned dynamically, in order to take into account the aircraft system operational state, a mission profile and the maintenance facilities available at the flight stop locations involved in the mission. The aim is to enable operational reliability assessment online. A case study, based on an aircraft subsystem, is considered for illustration using the Stochastic Activity Networks (SANs) formalism.

Suggested Citation

  • Tiassou, Kossi & Kanoun, Karama & Kaâniche, Mohamed & Seguin, Christel & Papadopoulos, Chris, 2013. "Aircraft operational reliability—A model-based approach and a case study," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 163-176.
  • Handle: RePEc:eee:reensy:v:120:y:2013:i:c:p:163-176
    DOI: 10.1016/j.ress.2013.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013002184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chew, S.P. & Dunnett, S.J. & Andrews, J.D., 2008. "Phased mission modelling of systems with maintenance-free operating periods using simulated Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 980-994.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yue & Zhu, Weihang & Xiang, Yisha & Feng, Qianmei, 2020. "Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    2. Jia-Qi, Liu & Yun-Wen, Feng & Da, Teng & Jun-Yu, Chen & Cheng, Lu, 2023. "Operational reliability evaluation and analysis framework of civil aircraft complex system based on intelligent extremum machine learning model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Ayse Sena Eruguz & Tarkan Tan & Geert‐Jan van Houtum, 2017. "Optimizing usage and maintenance decisions for k‐out‐of‐n systems of moving assets," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 418-434, August.
    3. Matsuoka, Takeshi, 2023. "Reliability analysis of a BWR plant system at startup stage  - analysis by the GO-FLOW methodology with consideration of loop structures and phased mission problem -," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    4. Simeu-Abazi, Zineb & Ahmad, Alali Alhouaij, 2011. "Optimisation of distributed maintenance: Modelling and application to the multi-factory production," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1564-1575.
    5. Xiao-song Yang & Xiao-yue Wu & Xin-yang Wu, 2014. "Automated generation of mission reliability simulation model for space tracking, telemetry and control system by extensible markup language and extended object-oriented Petri net," Journal of Risk and Reliability, , vol. 228(4), pages 397-408, August.
    6. Tiedo Tinga & Rene Janssen, 2013. "The interplay between deployment and optimal maintenance intervals for complex multi-component systems," Journal of Risk and Reliability, , vol. 227(3), pages 227-240, June.
    7. Yu, Haiyue & Wu, Xinyang & Wu, Xiaoyue, 2020. "An extended object-oriented petri net model for mission reliability evaluation of phased-mission system with time redundancy," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    8. Kleyner, Andre & Volovoi, Vitali, 2010. "Application of Petri nets to reliability prediction of occupant safety systems with partial detection and repair," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 606-613.
    9. Fritzsche, R., 2012. "Cost adjustment for single item pooling models using a dynamic failure rate: A calculation for the aircraft industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1065-1079.
    10. Xia, Tangbin & Xi, Lifeng & Pan, Ershun & Ni, Jun, 2017. "Reconfiguration-oriented opportunistic maintenance policy for reconfigurable manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 87-98.
    11. Peng, Rui & Zhai, Qingqing & Xing, Liudong & Yang, Jun, 2014. "Reliability of demand-based phased-mission systems subject to fault level coverage," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 18-25.
    12. Sheng, Jingyu & Prescott, Darren, 2017. "A hierarchical coloured Petri net model of fleet maintenance with cannibalisation," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 290-305.
    13. Xing, Liudong & Amari, Suprasad V. & Wang, Chaonan, 2012. "Reliability of k-out-of-n systems with phased-mission requirements and imperfect fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 45-50.
    14. Gonçalves, P. & Sobral, J. & Ferreira, L.A., 2017. "Unmanned aerial vehicle safety assessment modelling through petri Nets," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 383-393.
    15. Sheng, Jingyu & Prescott, Darren, 2019. "Using a novel hierarchical coloured Petri net to model and optimise fleet spare inventory, cannibalisation and preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    16. Wu, Xin-yang & Wu, Xiao-Yue, 2015. "Extended object-oriented Petri net model for mission reliability simulation of repairable PMS with common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 109-119.
    17. Huang, Xianzhen & Aslett, Louis J.M. & Coolen, Frank P.A., 2019. "Reliability analysis of general phased mission systems with a new survival signature," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 416-422.
    18. Zhai, Qingqing & Xing, Liudong & Peng, Rui & Yang, Jun, 2018. "Aggregated combinatorial reliability model for non-repairable parallel phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 242-250.
    19. Sheng, Jingyu & Prescott, Darren, 2019. "A coloured Petri net framework for modelling aircraft fleet maintenance," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 67-88.
    20. Lu, Ji-Min & Wu, Xiao-Yue, 2014. "Reliability evaluation of generalized phased-mission systems with repairable components," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 136-145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:120:y:2013:i:c:p:163-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.