IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v114y2013icp12-25.html
   My bibliography  Save this article

Reliability analysis of maintenance operations for railway tracks

Author

Listed:
  • Rhayma, N.
  • Bressolette, Ph.
  • Breul, P.
  • Fogli, M.
  • Saussine, G.

Abstract

Railway engineering is confronted with problems due to degradation of the railway network that requires important and costly maintenance work. However, because of the lack of knowledge on the geometrical and mechanical parameters of the track, it is difficult to optimize the maintenance management. In this context, this paper presents a new methodology to analyze the behavior of railway tracks. It combines new diagnostic devices which permit to obtain an important amount of data and thus to make statistics on the geometric and mechanical parameters and a non-intrusive stochastic approach which can be coupled with any mechanical model. Numerical results show the possibilities of this methodology for reliability analysis of different maintenance operations. In the future this approach will give important informations to railway managers to optimize maintenance operations using a reliability analysis.

Suggested Citation

  • Rhayma, N. & Bressolette, Ph. & Breul, P. & Fogli, M. & Saussine, G., 2013. "Reliability analysis of maintenance operations for railway tracks," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 12-25.
  • Handle: RePEc:eee:reensy:v:114:y:2013:i:c:p:12-25
    DOI: 10.1016/j.ress.2012.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012002633
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Podofillini, Luca & Zio, Enrico & Vatn, Jørn, 2006. "Risk-informed optimisation of railway tracks inspection and maintenance procedures," Reliability Engineering and System Safety, Elsevier, vol. 91(1), pages 20-35.
    2. Vatn, Jørn & Aven, Terje, 2010. "An approach to maintenance optimization where safety issues are important," Reliability Engineering and System Safety, Elsevier, vol. 95(1), pages 58-63.
    3. Macchi, Marco & Garetti, Marco & Centrone, Domenico & Fumagalli, Luca & Piero Pavirani, Gian, 2012. "Maintenance management of railway infrastructures based on reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 71-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zai-Wei Li & Xiao-Zhou Liu & Si-Xin Chen, 2022. "A reliability assessment approach for slab track structure based on vehicle-track dynamics and surrogate model," Journal of Risk and Reliability, , vol. 236(1), pages 79-89, February.
    2. Sedghi, Mahdieh & Kauppila, Osmo & Bergquist, Bjarne & Vanhatalo, Erik & Kulahci, Murat, 2021. "A taxonomy of railway track maintenance planning and scheduling: A review and research trends," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian Gill & Piotr Smoczyński, 2021. "Optimization of Safety System Structures in Railway Transport," Sustainability, MDPI, vol. 13(19), pages 1-15, September.
    2. Macchi, Marco & Garetti, Marco & Centrone, Domenico & Fumagalli, Luca & Piero Pavirani, Gian, 2012. "Maintenance management of railway infrastructures based on reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 71-83.
    3. Flage, Roger, 2014. "A delay time model with imperfect and failure-inducing inspections," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 1-12.
    4. Li, Zai-Wei & Zhou, Yun-Lai & Liu, Xiao-Zhou & Abdel Wahab, Magd, 2023. "Service reliability assessment of ballastless track in high speed railway via improved response surface method," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Simeu-Abazi, Zineb & Lefebvre, Arnaud & Derain, Jean-Pierre, 2011. "A methodology of alarm filtering using dynamic fault tree," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 257-266.
    6. Saleh, Ali & Remenyte-Prescott, Rasa & Prescott, Darren & Chiachío, Manuel, 2024. "Intelligent and adaptive asset management model for railway sections using the iPN method," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Nilsson, Jan-Eric & Odolinski, Kristofer, 2020. "When should infrastructure assets be renewed?: the economic impact of cumulative tonnes on railway infrastructure," Papers 2020:4, Research Programme in Transport Economics.
    8. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    9. Darren Prescott & John Andrews, 2013. "A track ballast maintenance and inspection model for a rail network," Journal of Risk and Reliability, , vol. 227(3), pages 251-266, June.
    10. Gedik, Ridvan & Medal, Hugh & Rainwater, Chase & Pohl, Ed A. & Mason, Scott J., 2014. "Vulnerability assessment and re-routing of freight trains under disruptions: A coal supply chain network application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 45-57.
    11. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.
    12. Li Yang & Yu Zhao & Xiaobing Ma & Qingan Qiu, 2018. "An optimal inspection and replacement policy for a two-unit system," Journal of Risk and Reliability, , vol. 232(6), pages 766-776, December.
    13. Sinisterra, Wilfrido Quiñones & Lima, Victor Hugo Resende & Cavalcante, Cristiano Alexandre Virginio & Aribisala, Adetoye Ayokunle, 2023. "A delay-time model to integrate the sequence of resumable jobs, inspection policy, and quality for a single-component system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Zai-Wei Li & Xiao-Zhou Liu & Si-Xin Chen, 2022. "A reliability assessment approach for slab track structure based on vehicle-track dynamics and surrogate model," Journal of Risk and Reliability, , vol. 236(1), pages 79-89, February.
    15. Badía, F.G. & Berrade, M.D. & Lee, Hyunju, 2020. "An study of cost effective maintenance policies: Age replacement versus replacement after N minimal repairs," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    16. Jiang, R. & Chen, Zhigao, 2020. "A standard-based approach for multi-criteria performance evaluation of engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    17. Ye, Zhisheng & Li, Zhizhong & Xie, Min, 2010. "Some improvements on adaptive genetic algorithms for reliability-related applications," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 120-126.
    18. Suyog S. Patil & Anand K. Bewoor & Ravinder Kumar & Mohammad Hossein Ahmadi & Mohsen Sharifpur & Seepana PraveenKumar, 2022. "Development of Optimized Maintenance Program for a Steam Boiler System Using Reliability-Centered Maintenance Approach," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    19. Fitouhi, Mohamed-Chahir & Nourelfath, Mustapha, 2014. "Integrating noncyclical preventive maintenance scheduling and production planning for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 175-186.
    20. Hong, Liu & Ouyang, Min & Peeta, Srinivas & He, Xiaozheng & Yan, Yongze, 2015. "Vulnerability assessment and mitigation for the Chinese railway system under floods," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 58-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:114:y:2013:i:c:p:12-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.