IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v90y2014icp9-20.html
   My bibliography  Save this article

Environmental assessment of two home composts with high and low gaseous emissions of the composting process

Author

Listed:
  • Quirós, Roberto
  • Villalba, Gara
  • Muñoz, Pere
  • Colón, Joan
  • Font, Xavier
  • Gabarrell, Xavier

Abstract

A Life Cycle Assessment (LCA) of two home composts with low and high gaseous emissions of the composting process is presented. The study focused on the gaseous emissions of the composting process. Gaseous emissions of methane, nitrous oxides, ammonia and volatic organic compounds of the composting process were experimentally measured in field real trials. The results showed that the differences in gaseous emissions between the two home composts were 4.5, 5.8 and 52 for methane, nitrous oxides and ammonia, respectively. Higher emissions of nitrous oxides and methane affected significantly the category of global warming potential, while higher emissions of ammonia affected mainly the categories of acidification potential, eutrophication potential and photochemical oxidation. The differences found in the compost emissions were attributable to the composting production management (quality and composition of waste stream, frequency mixing of waste, humidity and temperature monitoring, among others) as well as weather conditions (temperature and humidity).

Suggested Citation

  • Quirós, Roberto & Villalba, Gara & Muñoz, Pere & Colón, Joan & Font, Xavier & Gabarrell, Xavier, 2014. "Environmental assessment of two home composts with high and low gaseous emissions of the composting process," Resources, Conservation & Recycling, Elsevier, vol. 90(C), pages 9-20.
  • Handle: RePEc:eee:recore:v:90:y:2014:i:c:p:9-20
    DOI: 10.1016/j.resconrec.2014.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344914001165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2014.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blengini, Gian Andrea, 2008. "Using LCA to evaluate impacts and resources conservation potential of composting: A case study of the Asti District in Italy," Resources, Conservation & Recycling, Elsevier, vol. 52(12), pages 1373-1381.
    2. Colón, Joan & Martínez-Blanco, Julia & Gabarrell, Xavier & Artola, Adriana & Sánchez, Antoni & Rieradevall, Joan & Font, Xavier, 2010. "Environmental assessment of home composting," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 893-904.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laís Fabiana Serafini & Manuel Feliciano & Manuel Angelo Rodrigues & Artur Gonçalves, 2023. "Systematic Review and Meta-Analysis on the Use of LCA to Assess the Environmental Impacts of the Composting Process," Sustainability, MDPI, vol. 15(2), pages 1-33, January.
    2. M. A. Vázquez & R. Plana & C. Pérez & M. Soto, 2020. "Development of Technologies for Local Composting of Food Waste from Universities," IJERPH, MDPI, vol. 17(9), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Butler, John & Hooper, Paul, 2010. "Down to Earth: An illustration of life cycle inventory good practice with reference to the production of soil conditioning compost," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 135-147.
    2. Giovanni Biancini & Barbara Marchetti & Luca Cioccolanti & Matteo Moglie, 2022. "Comprehensive Life Cycle Assessment Analysis of an Italian Composting Facility concerning Environmental Footprint Minimization and Renewable Energy Integration," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    3. Karnchanawong, Somjai & Suriyanon, Nakorn, 2011. "Household organic waste composting using bins with different types of passive aeration," Resources, Conservation & Recycling, Elsevier, vol. 55(5), pages 548-553.
    4. Luciano Rodrigues Viana & Pierre-Luc Dessureault & Charles Marty & Jean-François Boucher & Maxime C. Paré, 2023. "Life Cycle Assessment of Oat Flake Production with Two End-of-Life Options for Agro-Industrial Residue Management," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    5. Colón, Joan & Martínez-Blanco, Julia & Gabarrell, Xavier & Artola, Adriana & Sánchez, Antoni & Rieradevall, Joan & Font, Xavier, 2010. "Environmental assessment of home composting," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 893-904.
    6. Marconsin, Adauto Fernandes & Rosa, Derval dos Santos, 2013. "A comparison of two models for dealing with urban solid waste: Management by contract and management by public–private partnership," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 115-123.
    7. Laís Fabiana Serafini & Manuel Feliciano & Manuel Angelo Rodrigues & Artur Gonçalves, 2023. "Systematic Review and Meta-Analysis on the Use of LCA to Assess the Environmental Impacts of the Composting Process," Sustainability, MDPI, vol. 15(2), pages 1-33, January.
    8. M. A. Vázquez & R. Plana & C. Pérez & M. Soto, 2020. "Development of Technologies for Local Composting of Food Waste from Universities," IJERPH, MDPI, vol. 17(9), pages 1-20, May.
    9. De Silva, Lihini & Taylor, Rebecca, 2021. "If you build it, they will compost: The effects of municipal composting services on household waste generation," 2021 Annual Meeting, August 1-3, Austin, Texas 313874, Agricultural and Applied Economics Association.
    10. Francesco Di Maria & Amani Maalouf, 2023. "Application of Entropy-Based Ecologic Indicators for Intrinsic Sustainability Assessment of EU27 Member States Waste Management Systems at Technosphere Level," Sustainability, MDPI, vol. 15(1), pages 1-13, January.
    11. Dong, Xin & He, Bao-Jie, 2023. "A standardized assessment framework for green roof decarbonization: A review of embodied carbon, carbon sequestration, bioenergy supply, and operational carbon scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    12. Maria Antoniadou & Theodoros Varzakas & Ioannis Tzoutzas, 2021. "Circular Economy in Conjunction with Treatment Methodologies in the Biomedical and Dental Waste Sectors," Circular Economy and Sustainability, Springer, vol. 1(2), pages 563-592, September.
    13. Angela Maffia & Federica Marra & Giuseppe Celano & Mariateresa Oliva & Carmelo Mallamaci & Muhammad Iftikhar Hussain & Adele Muscolo, 2024. "Exploring the Potential and Obstacles of Agro-Industrial Waste-Based Fertilizers," Land, MDPI, vol. 13(8), pages 1-18, July.
    14. Fragkou, Maria Christina & Vicent, Teresa & Gabarrell, Xavier, 2010. "A general methodology for calculating the MSW management self-sufficiency indicator: Application to the wider Barcelona area," Resources, Conservation & Recycling, Elsevier, vol. 54(6), pages 390-399.
    15. Martínez-Blanco, Julia & Muñoz, Pere & Antón, Assumpció & Rieradevall, Joan, 2009. "Life cycle assessment of the use of compost from municipal organic waste for fertilization of tomato crops," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 340-351.
    16. Blengini, G.A. & Brizio, E. & Cibrario, M. & Genon, G., 2011. "LCA of bioenergy chains in Piedmont (Italy): A case study to support public decision makers towards sustainability," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 36-47.
    17. Colón, Joan & Cadena, Erasmo & Colazo, Ana Belen & Quirós, Roberto & Sánchez, Antoni & Font, Xavier & Artola, Adriana, 2015. "Toward the implementation of new regional biowaste management plans: Environmental assessment of different waste management scenarios in Catalonia," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 143-155.
    18. Pierer, Magdalena & Schröck, Andrea & Winiwarter, Wilfried, 2015. "Analyzing consumer-related nitrogen flows: A case study on food and material use in Austria," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 203-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:90:y:2014:i:c:p:9-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.