IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v58y2012icp79-87.html
   My bibliography  Save this article

Improving aluminum recycling: A survey of sorting and impurity removal technologies

Author

Listed:
  • Gaustad, Gabrielle
  • Olivetti, Elsa
  • Kirchain, Randolph

Abstract

Aluminum recycling has a number of key environmental and economic benefits. With these energy and cost savings in mind, many producers now have targets of increasing their usage of secondary materials. However, the accumulation of impurities in these recycled material streams may provide a significant compositional barrier to these goals. A growing number of studies and literature suggest that accumulation of unwanted elements is a growing problem; for the case of aluminum, the list of problematic impurities is quite large, including but not limited to Si, Mg, Ni, Zn, Pb, Cr, Fe, Cu, V, and Mn. The removal of unwanted elements in the scrap stream is dictated by the energy considerations of the melt process. Compared to many metals, it is challenging to remove tramp elements from aluminium. Therefore, with no simple thermodynamic solution, producers must identify strategies throughout the production process to mitigate this elemental accumulation. There are a variety of solutions to deal with accumulation of undesired elements; each presents a trade-off between cost and efficacy (tramp removal). Dilution with primary is the most common solution used in industry today; this has a negative impact on recycling as the required dilution results in a compositionally determined cap to recycling rates. This article provides an overview of the expanse of upgrading technologies available at both the industrial and lab-scale to improve aluminum scrap purity and facilitate recycling.

Suggested Citation

  • Gaustad, Gabrielle & Olivetti, Elsa & Kirchain, Randolph, 2012. "Improving aluminum recycling: A survey of sorting and impurity removal technologies," Resources, Conservation & Recycling, Elsevier, vol. 58(C), pages 79-87.
  • Handle: RePEc:eee:recore:v:58:y:2012:i:c:p:79-87
    DOI: 10.1016/j.resconrec.2011.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344911002217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2011.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shih, Jhih-Shyang & Frey, H. Christopher, 1995. "Coal blending optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 83(3), pages 452-465, June.
    2. Unknown, 2001. "End Materials," Proceedings of the 6th Agricultural and Food Policy Systems Information Workshop, 2000: Trade Liberalization Under NAFTA: Report Card on Agriculture 16845, Farm Foundation, Agricultural and Food Policy Systems Information Workshops.
    3. Unknown, 2004. "End Materials," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 19(4), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simic, Vladimir & Dimitrijevic, Branka, 2012. "Production planning for vehicle recycling factories in the EU legislative and global business environments," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 78-88.
    2. Millet, Dominique & Yvars, Pierre-Alain & Tonnelier, Pierre, 2012. "A method for identifying the worst recycling case: Application on a range of vehicles in the automotive sector," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 1-13.
    3. Julien Pedneault & Guillaume Majeau‐Bettez & Manuele Margni, 2023. "How much sorting is required for a circular low carbon aluminum economy?," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 977-992, June.
    4. Hatayama, Hiroki & Daigo, Ichiro & Matsuno, Yasunari & Adachi, Yoshihiro, 2012. "Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 8-14.
    5. Chen, Wei-Qiang & Shi, Lei, 2012. "Analysis of aluminum stocks and flows in mainland China from 1950 to 2009: Exploring the dynamics driving the rapid increase in China's aluminum production," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 18-28.
    6. Pauliuk, Stefan & Kondo, Yasushi & Nakamura, Shinichiro & Nakajima, Kenichi, 2017. "Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 84-93.
    7. Julien Pedneault & Guillaume Majeau‐Bettez & Stefan Pauliuk & Manuele Margni, 2022. "Sector‐specific scenarios for future stocks and flows of aluminum: An analysis based on shared socioeconomic pathways," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1728-1746, October.
    8. Ciacci, Luca & Chen, Weiqiang & Passarini, Fabrizio & Eckelman, Matthew & Vassura, Ivano & Morselli, Luciano, 2013. "Historical evolution of anthropogenic aluminum stocks and flows in Italy," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 1-8.
    9. Niero, Monia & Olsen, Stig Irving, 2016. "Circular economy: To be or not to be in a closed product loop? A Life Cycle Assessment of aluminium cans with inclusion of alloying elements," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 18-31.
    10. Stotz, Philippe Maurice & Niero, Monia & Bey, Niki & Paraskevas, Dimos, 2017. "Environmental screening of novel technologies to increase material circularity: A case study on aluminium cans," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 96-106.
    11. Wan, Bingbing & Chen, Weiping & Lu, Tiwen & Liu, Fangfang & Jiang, Zhenfei & Mao, Mengdi, 2017. "Review of solid state recycling of aluminum chips," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 37-47.
    12. Sabaghi, Mahdi & Cai, Yongliang & Mascle, Christian & Baptiste, Pierre, 2015. "Sustainability assessment of dismantling strategies for end-of-life aircraft recycling," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 163-169.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. N., 2001. "52nd Euroconstruct Conference: The Outlook for the European Construction Sector 2001-2004. Summary Report," WIFO Studies, WIFO, number 21004.
    2. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    3. Hatayama, Hiroki & Daigo, Ichiro & Matsuno, Yasunari & Adachi, Yoshihiro, 2012. "Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 8-14.
    4. Ashley Fly & Kyoungyoun Kim & John Gordon & Daniel Butcher & Rui Chen, 2019. "Liquid Water Transport in Porous Metal Foam Flow-Field Fuel Cells: A Two-Phase Numerical Modelling and Ex-Situ Experimental Study," Energies, MDPI, vol. 12(7), pages 1-14, March.
    5. Anna Danandeh & Bo Zeng & Brent Caldwell & Brian Buckley, 2016. "A Decision Support System for Fuel Supply Chain Design at Tampa Electric Company," Interfaces, INFORMS, vol. 46(6), pages 503-521, December.
    6. Ümit Sakallı & Ömer Baykoç & Burak Birgören, 2011. "Stochastic optimization for blending problem in brass casting industry," Annals of Operations Research, Springer, vol. 186(1), pages 141-157, June.
    7. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    8. Sunil Herat, 2008. "Environmental impacts and use of brominated flame retardants in electrical and electronic equipment," Environment Systems and Decisions, Springer, vol. 28(4), pages 348-357, December.
    9. repec:idb:brikps:388 is not listed on IDEAS
    10. Qing Feng & Qian Huang & Qingyan Zheng & Li Lu, 2018. "New Carbon Emissions Allowance Allocation Method Based on Equilibrium Strategy for Carbon Emission Mitigation in the Coal-Fired Power Industry," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    11. Cheng, Kun & Ogle, Stephen M. & Parton, William J. & Pan, Genxing, 2013. "Predicting methanogenesis from rice paddies using the DAYCENT ecosystem model," Ecological Modelling, Elsevier, vol. 261, pages 19-31.
    12. Mark Wiering & Irene Immink, 2006. "When Water Management Meets Spatial Planning: A Policy-Arrangements Perspective," Environment and Planning C, , vol. 24(3), pages 423-438, June.
    13. Lv, Chengwei & Xu, Jiuping & Xie, Heping & Zeng, Ziqiang & Wu, Yimin, 2016. "Equilibrium strategy based coal blending method for combined carbon and PM10 emissions reductions," Applied Energy, Elsevier, vol. 183(C), pages 1035-1052.
    14. Michel Minoux & Riadh Zorgati, 2019. "Sharp upper and lower bounds for maximum likelihood solutions to random Gaussian bilateral inequality systems," Journal of Global Optimization, Springer, vol. 75(3), pages 735-766, November.
    15. Carton, J.G. & Olabi, A.G., 2017. "Three-dimensional proton exchange membrane fuel cell model: Comparison of double channel and open pore cellular foam flow plates," Energy, Elsevier, vol. 136(C), pages 185-195.
    16. Shubham Vaishnav & Ankit Agarwal & K. A. Desai, 2020. "Machine learning-based instantaneous cutting force model for end milling operation," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1353-1366, August.
    17. Awin, Yussef & Dukhan, Nihad, 2019. "Experimental performance assessment of metal-foam flow fields for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Dihrab, Salwan S. & Sopian, K. & Alghoul, M.A. & Sulaiman, M.Y., 2009. "Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1663-1668, August.
    19. Iakovou, E. & Moussiopoulos, N. & Xanthopoulos, A. & Achillas, Ch. & Michailidis, N. & Chatzipanagioti, M. & Koroneos, C. & Bouzakis, K.-D. & Kikis, V., 2009. "A methodological framework for end-of-life management of electronic products," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 329-339.
    20. Guerras, Lidia S. & Martín, Mariano, 2019. "Optimal gas treatment and coal blending for reduced emissions in power plants: A case study in Northwest Spain," Energy, Elsevier, vol. 169(C), pages 739-749.
    21. Willem Haanstra & Alberto Martinetti & Jan Braaksma & Leo van Dongen, 2020. "Design of a Framework for Integrating Environmentally Sustainable Design Principles and Requirements in Train Modernization Projects," Sustainability, MDPI, vol. 12(15), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:58:y:2012:i:c:p:79-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.