IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v52y2007i2p331-350.html
   My bibliography  Save this article

Biomass use in chemical and mechanical pulping with biomass-based energy supply

Author

Listed:
  • Holmberg, Jonas M.
  • Gustavsson, Leif

Abstract

The pulp and paper industry is energy intensive and consumes large amounts of wood. Biomass is a limited resource and its efficient use is therefore important. In this study, the total amount of biomass used for pulp and for energy is estimated for the production of several woodfree (containing only chemical pulp) and mechanical (containing mechanical pulp) printing paper products, under Swedish conditions. Chemical pulp mills today are largely self-sufficient in energy while mechanical pulp mills depend on large amounts of external electricity. Technically, all energy used in pulp- and papermaking can be biomass based. Here, we assume that all energy used, including external electricity and motor fuels, is based on forest biomass. The whole cradle-to-gate chain is included in the analyses. The results indicate that the total amount of biomass required per tonne paper is slightly lower for woodfree than for mechanical paper. For the biomass use per paper area, the paper grammage is decisive. If the grammage can be lowered by increasing the proportion of mechanical pulp, this may lower the biomass use per paper area, despite the higher biomass use per unit mass in mechanical paper. In the production of woodfree paper, energy recovery from residues in the mill accounts for most of the biomass use, while external electricity production accounts for the largest part for mechanical paper. Motor fuel production accounts for 5–7% of the biomass use. The biomass contained in the final paper product is 21–42% of the total biomass use, indicating that waste paper recovery is important. The biomass use was found to be about 15–17% lower for modelled, modern mills compared with mills representative of today's average technology.

Suggested Citation

  • Holmberg, Jonas M. & Gustavsson, Leif, 2007. "Biomass use in chemical and mechanical pulping with biomass-based energy supply," Resources, Conservation & Recycling, Elsevier, vol. 52(2), pages 331-350.
  • Handle: RePEc:eee:recore:v:52:y:2007:i:2:p:331-350
    DOI: 10.1016/j.resconrec.2007.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344907001097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2007.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gustavsson, Leif & Karlsson, Asa, 2002. "A system perspective on the heating of detached houses," Energy Policy, Elsevier, vol. 30(7), pages 553-574, June.
    2. K. Pingoud & A. Lehtilä, 2002. "Fossil carbon emissions associated with carbon flowsof wood products," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(1), pages 63-83, March.
    3. Möllersten, K. & Yan, J. & Westermark, M., 2003. "Potential and cost-effectiveness of CO2 reductions through energy measures in Swedish pulp and paper mills," Energy, Elsevier, vol. 28(7), pages 691-710.
    4. Nystrom, Ingrid & Cornland, Deborah W., 2003. "Strategic choices: Swedish climate intervention policies and the forest industry's role in reducing CO2 emissions," Energy Policy, Elsevier, vol. 31(10), pages 937-950, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Xingang & Li, Xujun & Liu, Fan & Lu, Libo & Jin, Hui & Wei, Wenwen & Chen, Yunan & Guo, Liejin, 2023. "Hydrogen production by kraft black liquor supercritical water gasification: Reaction pathway and kinetic," Energy, Elsevier, vol. 282(C).
    2. Laurijssen, Jobien & Marsidi, Marc & Westenbroek, Annita & Worrell, Ernst & Faaij, Andre, 2010. "Paper and biomass for energy?," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1208-1218.
    3. Ali, Ramadan Hefny & Abdel Samee, Ahmed A. & Maghrabie, Hussein M., 2023. "Thermodynamic analysis of a cogeneration system in pulp and paper industry under singular and hybrid operating modes," Energy, Elsevier, vol. 263(PE).
    4. Joelsson, J.M. & Gustavsson, L., 2008. "CO2 emission and oil use reduction through black liquor gasification and energy efficiency in pulp and paper industry," Resources, Conservation & Recycling, Elsevier, vol. 52(5), pages 747-763.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joelsson, J.M. & Gustavsson, L., 2008. "CO2 emission and oil use reduction through black liquor gasification and energy efficiency in pulp and paper industry," Resources, Conservation & Recycling, Elsevier, vol. 52(5), pages 747-763.
    2. Siitonen, Sari & Tuomaala, Mari & Suominen, Markku & Ahtila, Pekka, 2010. "Implications of process energy efficiency improvements for primary energy consumption and CO2 emissions at the national level," Applied Energy, Elsevier, vol. 87(9), pages 2928-2937, September.
    3. Leif Gustavsson & Kim Pingoud & Roger Sathre, 2006. "Carbon Dioxide Balance of Wood Substitution: Comparing Concrete- and Wood-Framed Buildings," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 667-691, May.
    4. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    5. Florian Marin & Felicia Bucura & Violeta-Carolina Niculescu & Antoaneta Roman & Oana Romina Botoran & Marius Constantinescu & Stefan Ionuț Spiridon & Eusebiu Ilarian Ionete & Simona Oancea & Anca Mari, 2024. "Mesoporous Silica Nanocatalyst-Based Pyrolysis of a By-Product of Paper Manufacturing, Black Liquor," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    6. Sathre, Roger & Gustavsson, Leif, 2009. "Process-based analysis of added value in forest product industries," Forest Policy and Economics, Elsevier, vol. 11(1), pages 65-75, January.
    7. Kenneth Möllersten & Lin Gao & Jinyue Yan, 2006. "CO 2 Capture in Pulp and Paper Mills: CO 2 Balances and Preliminary Cost Assessment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1129-1150, September.
    8. Kay Damen & André Faaij, 2006. "A Greenhouse Gas Balance of two Existing International Biomass Import Chains," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1023-1050, September.
    9. Povellato, Andrea & Bosello, Francesco & Giupponi, Carlo, 2007. "A Review of Recent Studies on Cost Effectiveness of GHG Mitigation Measures in the European Agro-Forestry Sector," Natural Resources Management Working Papers 10268, Fondazione Eni Enrico Mattei (FEEM).
    10. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    11. Truong, Nguyen Le & Gustavsson, Leif, 2013. "Integrated biomass-based production of district heat, electricity, motor fuels and pellets of different scales," Applied Energy, Elsevier, vol. 104(C), pages 623-632.
    12. Brainard, Julii & Lovett, Andrew & Bateman, Ian, 2006. "Sensitivity analysis in calculating the social value of carbon sequestered in British grown Sitka spruce," Journal of Forest Economics, Elsevier, vol. 12(3), pages 201-228, December.
    13. Joelsson, Anna & Gustavsson, Leif, 2009. "District heating and energy efficiency in detached houses of differing size and construction," Applied Energy, Elsevier, vol. 86(2), pages 126-134, February.
    14. Styles, David & Jones, Michael B., 2008. "Miscanthus and willow heat production--An effective land-use strategy for greenhouse gas emission avoidance in Ireland?," Energy Policy, Elsevier, vol. 36(1), pages 97-107, January.
    15. Dodoo, Ambrose & Gustavsson, Leif, 2013. "Life cycle primary energy use and carbon footprint of wood-frame conventional and passive houses with biomass-based energy supply," Applied Energy, Elsevier, vol. 112(C), pages 834-842.
    16. Svensson, Elin & Berntsson, Thore & Strömberg, Ann-Brith, 2009. "Benefits of using an optimization methodology for identifying robust process integration investments under uncertainty--A pulp mill example," Energy Policy, Elsevier, vol. 37(3), pages 813-824, March.
    17. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    18. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Ren, Hongbo & Gao, Weijun, 2010. "A MILP model for integrated plan and evaluation of distributed energy systems," Applied Energy, Elsevier, vol. 87(3), pages 1001-1014, March.
    20. Karlsson, Asa & Gustavsson, Leif, 2003. "External costs and taxes in heat supply systems," Energy Policy, Elsevier, vol. 31(14), pages 1541-1560, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:52:y:2007:i:2:p:331-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.