Energy and carbon balances of wood cascade chains
Author
Abstract
Suggested Citation
DOI: 10.1016/j.resconrec.2005.12.008
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Björklund, Anna & Finnveden, Göran, 2005. "Recycling revisited—life cycle comparisons of global warming impact and total energy use of waste management strategies," Resources, Conservation & Recycling, Elsevier, vol. 44(4), pages 309-317.
- K. Pingoud & A. Lehtilä, 2002. "Fossil carbon emissions associated with carbon flowsof wood products," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(1), pages 63-83, March.
- Haberl, Helmut, 2006. "The global socioeconomic energetic metabolism as a sustainability problem," Energy, Elsevier, vol. 31(1), pages 87-99.
- Daniel B. Müller & Hans‐Peter Bader & Peter Baccini, 2004. "Long‐term Coordination of Timber Production and Consumption Using a Dynamic Material and Energy Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 8(3), pages 65-88, July.
- Borjesson, Pal & Gustavsson, Leif, 2000. "Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives," Energy Policy, Elsevier, vol. 28(9), pages 575-588, July.
- Niels J. Schenk & Henri C. Moll & José Potting, 2004. "The Nonlinear Relationship between Paper Recycling and Primary Pulp Requirements," Journal of Industrial Ecology, Yale University, vol. 8(3), pages 141-162, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Risse, Michael & Weber-Blaschke, Gabriele & Richter, Klaus, 2017. "Resource efficiency of multifunctional wood cascade chains using LCA and exergy analysis, exemplified by a case study for Germany," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 141-152.
- Chunyi Ji & Wenbin Cao & Yong Chen & Hongqiang Yang, 2016. "Carbon Balance and Contribution of Harvested Wood Products in China Based on the Production Approach of the Intergovernmental Panel on Climate Change," IJERPH, MDPI, vol. 13(11), pages 1-10, November.
- Roope Husgafvel & Daishi Sakaguchi, 2023. "Circular Economy Development in the Wood Construction Sector in Finland," Sustainability, MDPI, vol. 15(10), pages 1-36, May.
- Höglmeier, Karin & Weber-Blaschke, Gabriele & Richter, Klaus, 2013. "Potentials for cascading of recovered wood from building deconstruction—A case study for south-east Germany," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 81-91.
- Dodoo, Ambrose & Gustavsson, Leif & Sathre, Roger, 2009. "Carbon implications of end-of-life management of building materials," Resources, Conservation & Recycling, Elsevier, vol. 53(5), pages 276-286.
- Höglmeier, Karin & Weber-Blaschke, Gabriele & Richter, Klaus, 2017. "Potentials for cascading of recovered wood from building deconstruction—A case study for south-east Germany," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 304-314.
- Mobtaker, A. & Ouhimmou, M. & Audy, J.-F. & Rönnqvist, M., 2021. "A review on decision support systems for tactical logistics planning in the context of forest bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- C. Bergeron, Francis, 2014. "Assessment of the coherence of the Swiss waste wood management," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 62-70.
- Geanina Maria David & Elena Simina Lakatos & Laura Bacali & Gheorghe Daniel Lakatos & Brianna Alexandra Danu & Lucian-Ionel Cioca & Elena Cristina Rada, 2024. "Key Factors Influencing Consumer Choices in Wood-Based Recycled Products for Circular Construction Sector," Sustainability, MDPI, vol. 16(20), pages 1-20, October.
- Dodoo, Ambrose & Gustavsson, Leif & Sathre, Roger, 2010. "Life cycle primary energy implication of retrofitting a wood-framed apartment building to passive house standard," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1152-1160.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Brainard, Julii & Lovett, Andrew & Bateman, Ian, 2006. "Sensitivity analysis in calculating the social value of carbon sequestered in British grown Sitka spruce," Journal of Forest Economics, Elsevier, vol. 12(3), pages 201-228, December.
- Braun, Martin & Winner, Georg & Schwarzbauer, Peter & Stern, Tobias, 2016. "Apparent Half-Life-Dynamics of Harvested Wood Products (HWPs) in Austria: Development and analysis of weighted time-series for 2002 to 2011," Forest Policy and Economics, Elsevier, vol. 63(C), pages 28-34.
- Reid Miner, 2023. "The 100-Year Method for Forecasting Carbon Sequestration in Forest Products in Use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(1), pages 1-20, October.
- Nadine May & Edeltraud Guenther & Peer Haller, 2017. "Environmental Indicators for the Evaluation of Wood Products in Consideration of Site-Dependent Aspects: A Review and Integrated Approach," Sustainability, MDPI, vol. 9(10), pages 1-31, October.
- Leif Gustavsson & Kim Pingoud & Roger Sathre, 2006. "Carbon Dioxide Balance of Wood Substitution: Comparing Concrete- and Wood-Framed Buildings," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 667-691, May.
- Lazarevic, David & Aoustin, Emmanuelle & Buclet, Nicolas & Brandt, Nils, 2010. "Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 246-259.
- Shenghan Li & Huanyu Wu & Zhikun Ding, 2018. "Identifying Sustainable Wood Sources for the Construction Industry: A Case Study," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
- Blair Fix, 2019. "Energy, hierarchy and the origin of inequality," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-32, April.
- Chihiro Kayo & Ryu Noda, 2018. "Climate Change Mitigation Potential of Wood Use in Civil Engineering in Japan Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
- Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
- Steinberger, Julia K. & van Niel, Johan & Bourg, Dominique, 2009. "Profiting from negawatts: Reducing absolute consumption and emissions through a performance-based energy economy," Energy Policy, Elsevier, vol. 37(1), pages 361-370, January.
- Sahlin, Jenny & Ekvall, Tomas & Bisaillon, Mattias & Sundberg, Johan, 2007. "Introduction of a waste incineration tax: Effects on the Swedish waste flows," Resources, Conservation & Recycling, Elsevier, vol. 51(4), pages 827-846.
- Dimoudi, A. & Tompa, C., 2008. "Energy and environmental indicators related to construction of office buildings," Resources, Conservation & Recycling, Elsevier, vol. 53(1), pages 86-95.
- Iñigo Capellán-Pérez & David Álvarez-Antelo & Luis J. Miguel, 2019. "Global Sustainability Crossroads : A Participatory Simulation Game to Educate in the Energy and Sustainability Challenges of the 21st Century," Sustainability, MDPI, vol. 11(13), pages 1-23, July.
- Marc A. Rosen, 2012. "Engineering Sustainability: A Technical Approach to Sustainability," Sustainability, MDPI, vol. 4(9), pages 1-23, September.
- B. Muller, Daniel, 2006. "Stock dynamics for forecasting material flows--Case study for housing in The Netherlands," Ecological Economics, Elsevier, vol. 59(1), pages 142-156, August.
- Fernando Aguilar Lopez & Romain G. Billy & Daniel B. Müller, 2022. "A product–component framework for modeling stock dynamics and its application for electric vehicles and lithium‐ion batteries," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1605-1615, October.
- L. Gustavsson & R. Madlener & H.-F. Hoen & G. Jungmeier & T. Karjalainen & S. KlÖhn & K. Mahapatra & J. Pohjola & B. Solberg & H. Spelter, 2006. "The Role of Wood Material for Greenhouse Gas Mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1097-1127, September.
- Zhao, Yan & Deng, Wenjing, 2014. "Environmental impacts of different food waste resource technologies and the effects of energy mix," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 214-221.
- Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
More about this item
Keywords
Cascading; Wood; Forest products; Energy; Carbon dioxide; Recycling; Land use;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:47:y:2006:i:4:p:332-355. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.